Anlaufmanagement
in der Serienfertigung

Diplomarbeit
Fakultät III
Leuphana Universität, Lüneburg

Eingereicht von:
Benjamin Ahrens
Lübecker Str. 9
28203 Bremen
Matrikel-Nr.: 1153560

Eingereicht bei:
Prof. Dr. H. Schleich
und
Prof. Dr. W. Adami
1. **EINLEITUNG**.................................................................................................................. 5

2. **PROJEKTBESCHREIBUNG ANLAUFMANAGEMENT**................................. 7

2.1. **DAS UNTERNEHMEN GPS PLANFABRIK GMBH, BREMEN** 7

2.2. **DIE HISTORIE DES UNTERNEHMENS GPS PLANFABRIK GMBH** 8

2.3. **ZUSAMMENARBEIT DER GPS PLANFABRIK GMBH UND DER AIRBUS DEUTSCHLAND GMBH** 8

2.4. **DAS PRODUKT A400M IN DER SERIENFERTIGUNG** 9

2.5. **AUSGANGSSITUATION** 11

2.6. **ZIELSETZUNG** 12

2.7. **AUFGABENSTELLUNG** 12

2.8. **VORGEHENSWEISE** 12

3. **DAS ANLAUFMANAGEMENT**................................................................. 13

3.1. **DER SERIENPRODUKTIONSANLAUF** 14

3.2. **DIE KERNZIELE IM PRODUKTIONSANLAUF** 16

3.3. **DIE HAUPTAUFGABE EINES ANLAUFMANAGEMENTS** 17

3.3.1. **BERECHNUNG DER LERNKURVE**................................................................. 18

3.4. **DIE GRUNDSÄTZE EINES ANLAUFMANAGEMENTS** 18

3.5. **DIE BASIS DES ANLAUFMANAGEMENTS** 19

3.6. **INTERORGANISATIONALE ZUSAMMENARBEIT** 19

3.7. **ZIELE DER INTERORGANISATIONALEN ZUSAMMENARBEIT** 21

3.8. **DIE BESTANDTEILE EINES ANLAUFMANAGEMENTS** 21

3.8.1. **PROJEKTMANAGEMENT**................................................................. 23

3.8.2. **QUALITÄTSMANAGEMENT**................................................................. 27

3.8.3. **ÄNDERUNGSMANAGEMENT**................................................................. 29

3.8.4. **LIEFERANTENMANAGEMENT**................................................................. 30

3.8.4.1. **Lieferantenstruktur**................................................................. 30

3.8.4.2. **Lieferantenstrategien**................................................................. 31

3.8.4.3. **Lieferantensegmentierung**................................................................. 32

3.8.4.4. **Lieferantenbewertung**................................................................. 32

Seite 1
4. ANALYSE DES PRODUKTIONSANLAUFES DER RUMPFMONTAGE DES A400M

4.1. BESCHREIBUNG DER KOMMUNIKATIONSPLATTFORM BEIM A400M 43
4.1.1. Analyse der Kommunikationsplattform beim A400M 44
4.1.2. Bewertung 45

4.2. BESCHREIBUNG DES PROZEßMANAGEMENTS BEIM A400M 46
4.2.1. Analyse des Prozeßmanagements beim A400M 47
4.2.2. Bewertung 48

4.3. BESCHREIBUNG DES QUALITÄTSMANAGEMENTS BEIM A400M 48
4.3.1. Analyse des Qualitätsmanagements beim A400M 48
4.3.2. Bewertung 49

4.4. BESCHREIBUNG DES LIEFERANTENMANAGEMENTS BEIM A400M 49
4.4.1. Analyse des Lieferantenmanagements 50
4.4.2. Bewertung 50

4.5. BESCHREIBUNG DES CONTROLLINGS BEIM A400M 51
4.5.1. Analyse des Controllings beim A400M 52
4.5.2. Bewertung 53

4.6. BESCHREIBUNG DES PROJEKTMANAGEMENTS BEIM A400M 53
4.6.1. Analyse des Projektmanagements beim A400M 54
4.6.2. Bewertung 55

4.7. BESCHREIBUNG DES KOSTEN- UND LEISTUNGSMANAGEMENTS BEIM A400M 55
4.7.1. Analyse des Kosten- und Leistungsmanagements beim A400M 56
4.7.2. Bewertung 56

4.8. BESCHREIBUNG DES ÄNDERUNGSMANAGEMENTS BEIM A400M 56
4.8.1. Analyse des Änderungsmagements beim A400M 56
5. **KONZEPT FÜR EINEN PRODUKTIONSANLAUF** ............................................. 57

5.1. **KOMMUNIKATIONSBASIS** .......................................................... 57

5.1.1. **AUFBAU EINES KOMMUNIKATIONSHANDBUCHES ALS BASIS** ........................................... 57
5.1.1.1. Aufbau einer Adressliste/-datenbank ................................................................. 58
5.1.1.2. Aufbau von Kommunikationswegen ................................................................. 58
5.1.1.3. Erstellung von Formblättern ............................................................................ 59
5.1.1.4. Erstellung eines Kommunikationsterminplans ................................................. 59
5.1.1.5. Kommunikationssprache .................................................................................. 59

5.2. **PROZESSMANAGEMENT** ................................................................. 59

5.2.1. **PROZESSBESCHREIBUNGEN** ......................................................... 60
5.2.2. **PROZESSANALYSE** ............................................................................. 60
5.2.3. **PROZESSSTEUERUNG** ............................................................................. 61

5.3. **PROJEKTMANAGEMENT** ................................................................. 61

5.3.1. **DEFINITIONSPHASE EINES PROJEKTES** .............................................. 61
5.3.2. **MESSBARKEIT DES PROJEKTES ERSTELLEN** ............................................ 62
5.3.3. **ANALYSIEREN DES PROJEKTES** ............................................................... 63
5.3.4. **INNOVATIVE IDEENFINDUNG ZUR OPTIMIERUNG DES PROJEKTES** .................. 63
5.3.5. **REGELUNG DES PROJEKTES** ....................................................................... 64

5.4. **LIEFERANTENMANAGEMENT** ......................................................... 64

5.4.1. **LIEFERANTENSTRUKTUR/-BEZIEHUNGEN** ............................................. 64
5.4.2. **LIEFERANTENSTRATEGIEN** ................................................................. 64
5.4.3. **LIEFERANENBEWERTUNG/-BEURTEILUNG** ............................................. 64
5.4.4. **LIEFERANTENAUSWAHL** ......................................................................... 65
5.4.5. **LIEFERANCONTROLLING, LIEFERANTENENTWICKLUNG** ......................... 65
5.4.6. **LIEFERANTENINTEGRATION** ................................................................. 65
5.4.7. **LIEFERANTENLOGISTIK** ........................................................................... 65

5.5. **ÄNDERUNGSMANAGEMENT** ............................................................ 65

5.5.1. **ÄNDERUNGSROUTINE** ................................................................. 65
5.5.1.1. Änderungsidee ............................................................................................... 65
5.5.1.2. Auslösung Änderungsvorhaben ..................................................................... 65
5.5.1.3. Vorbereitung ................................................................................................. 65
5.5.1.4. Detailierung .................................................................................................... 66
5.5.1.5. Abstimmung mit dem Kunden ...................................................................... 66
5.5.1.6. Genehmigung der Wertgrenzen .................................................................... 66
5.5.1.7. Konstruktive Umsetzung .............................................................................. 66
5.5.1.8. Produktive Umsetzung ............................................................................... 66
5.5.1.9. Die Änderung wird kontrolliert ..................................................................... 66

5.6. **QUALITÄTSMANAGEMENT** ............................................................... 66

5.6.1. **PLANUNG DER FUNKTION UND DER QUALITÄT** ..................................... 66
5.6.2. **ANALYSE DER FUNKTIONS- UND QUALITÄTSMERKMALE** ................... 67
5.6.3. REGELUNG DER FUNKTION UND DER QUALITÄT ........................................... 67

6. FAZIT ..................................................................................................................... 67

7. VERZEICHNISSE..................................................................................................... 69

7.1. TABELLENVERZEICHNIS .................................................................................. 69
7.2. ABBILDUNGSVERZEICHNIS ........................................................................... 69
7.3. ABKÜRZUNGSVERZEICHNIS ......................................................................... 70
7.4. LITERATURVERZEICHNIS ................................................................................ 71
   7.4.1. BUCHQUELLEN ............................................................................................ 71
   7.4.2. INTERNETQUELLEN ................................................................................... 71
   7.4.3. ZEITSCHRIFTEN ........................................................................................ 72
7.5. GLOSSAR ............................................................................................................ 73
1. Einleitung


Aus diesen Gründen baut sich die Diplomarbeit wie folgt auf: Einleitend im ersten Kapitel werden meine Motivation und der Inhalt der Diplomarbeit beschrieben, im zweiten Kapitel werden die Unternehmen GPS Planfabrik und Airbus kurz vorgestellt und das Produkt A400M beschrieben so wie die geplante Fertigung. Ebenfalls im zweiten Kapitel werden die Aufgabenstellung die Zielsetzung und die Vorgehensweise erläutert. Im nächsten Kapitel werden die aus Literaturrecherchen, Diskussionen und Medienrecherchen herausgearbeiteten Bestandteile eines Anlaufmanagements beschrieben und erklärt. Im 4. Kapitel evaluiere ich die Bestandteile, die erarbeitet wurden an Hand des Projektes des A400M und erarbeite eine Checkliste für das Unternehmen GPS Planfabrik GmbH.

2. Projektbeschreibung Anlaufmanagement

2.1. Das Unternehmen GPS Planfabrik GmbH, Bremen


Als neutraler Berater und Projektmanager erarbeitet GPS, in Zusammenarbeit mit Mitarbeitern des Kunden den Lösungsweg und setzt diesen um.
2.2. **Die Historie des Unternehmens GPS Planfabrik GmbH**

| 1998 | Gründung des Unternehmens GPS Planfabrik GmbH im Bremer Forum für Wirtschaft und Wissenschaft  
Basis: Die Planung und Realisierung von Produktionsanlagen |
| 1999 | Realisierung der ersten roboterautomatisierten Fertigung im Airbus-Werk Stade  
Projekte für die Produktivitätssteigerung und Automatisierung |
| 2000 | Werksstruktur- und Fabrikplanung für einen Automobilzulieferer  
Start der A380-Fabrikplanung für den Airbus-Standort Hamburg |
| 2001 | Kompetenzerweiterung in den Bereichen Materialfluss und Logistik  
Projektbegleitende Entwicklung der GPS-Toolbox |
| 2002 | Kompetenzzenter in Hamburg-Harburg  
Kompetenzerweiterung und Projekt zu Organisation und Prozessen |
| 2003 | Planung und Durchführung von Projektmanagement-Workshops und Seminaren  
Kompetenzerweiterung im Bereich Logistik und IT |
| 2004 | Erweiterung der GPS-Aktivitäten am Standort Hamburg  
Kompetenzerweiterung im Bereich dynamische Simulation |
| 2005 | Gründung der eigenständigen GPS Plansystem GmbH  
für die Einführung von Methoden, Tools und Coaching  
Planung und Realisierung einer komplexen Produktionsverlagerung |

Tabelle 1:GPS Planfabrik GmbH Historie

2.3. **Zusammenarbeit der GPS Planfabrik GmbH und der Airbus Deutschland GmbH**


1 [http://www.planfabrik.de](http://www.planfabrik.de)

Aus dieser Zusammenarbeit resultiert auch die weitere Kooperation in einem Projekt am Standort Bremen. Der Rumpf der Militärmaschine A400M wird am Standort Bremen montiert. GPS übernimmt hierbei die Aufgaben der Fabrikplanung und der Anlaufplanung für die Serienfertigung des A400M. Zum heutigen Zeitpunkt ist die Fabrikplanung weitestgehend abgeschlossen und die Prototypenphase hat begonnen.

2.4. Das Produkt A400M in der Serienfertigung

Der A400M ist ein militärisches Transportflugzeug, welches von acht Nationen entwickelt und gefertigt wird. Es sind die acht Nationen, die auch zuerst beliefert werden. Hierbei handelt es sich um Belgien, Deutschland, Frankreich, Großbritannien, Luxemburg, Spanien, Südafrika und die Türkei. In Deutschland wird am Standort Bremen der Rumpf in einer taktgesteuerten Serienfertigung montiert.

---

2 Fachzeitschrift MaschinenMarkt, 28.04.2005
http://www.maschinenmarkt.de/fachartikel/mm_fachartikel_1904982.html

Abbildung 1: IFA Bauteile mit den Lieferanten

Abbildung 2: Projektoposter der Prozesskette

Abbildung 3: Prozesskette der ersten vier Takte

2.5. Ausgangssituation

Zurzeit basiert der Produktionsanlauf auf dem Wissen der Projektingenieure. Es gibt noch keine einheitlich implementierte Vorgehensweise in Produktionsanläufen. Alle Probleme, die in der Planungs- und Prototypenphase auftreten, werden aufgenommen und gelistet, um sie abzuarbeiten. Es entsteht eine Art „ToDo-Liste“. Zum jetzigen Projektstand

\[\text{Der Inhalt der "ToDo-Liste" ist nicht standardisiert, d.h. formfrei. Es hat sich aber eingebürgert, eine schlichte Punkteliste zu erstellen, die die verschiedenen zu erfüllenden Punkte darlegt.}\]
werden auf Wunsch des Kunden noch keine Eingriffs- und Optimierungsmöglichkeiten erarbeitet. Es werden lediglich die Stände im Projekt dokumentiert.

2.6. Zielsetzung


2.7. Aufgabenstellung


Im Rahmen dieser Diplomarbeit werden das Produktionsanlaufkonzept des A400M und die möglichen Methoden aus der Recherche in Print- und Onlinemedien sowie aus Interviews erarbeitet und evaluiert. Aus dem Abgleich des Produktionsanlaufes für die Serienfertigung des Produktes A400M und den Methoden aus der Recherche soll ein einheitliches Produktionsanlaufkonzept für die Firma GPS Planfabrik abgeleitet werden. Im Rahmen dieses Abgleichs sollen verschiedene Methoden erarbeitet werden, die ein flexibel arbeitendes Produktionsanlaufkonzept entstehen lassen. Das Produktionsanlaufkonzept muss die Zeitpotenziale und Aufwandspotenziale im Produktionsanlauf aufzeigen und bei der Bearbeitung Hilfe geben.

2.8. Vorgehensweise

Es wurden Brainstormings, Umfragen und Diskussionsforen genutzt, um die Inhalte, die ein Produktionsanlaufkonzept haben sollte, zu erarbeiten. Ferner wurden Medienrecherchen und Mitarbeiterinterviews durchgeführt. Die

Im weiteren Verlauf der Diplomarbeit werden die erarbeiteten Faktoren aus den Meinungsbildern, der Medienrecherche und den Interviews für ein Produktionsanlaufkonzept genutzt.

Die Integration eines Produktionsanlaufkonzeptes kann auf folgende Probleme treffen:

§ Das Konzept findet keine Akzeptanz bei den Mitarbeitern.
§ Das Konzept wird falsch verstanden.
§ Interorganisationale Zusammenarbeit im Wertschöpfungsnetzwerk hat wegen eigenem Produktionsanlaufkonzept keine Kundenakzeptanz.

Zur Vermeidung dieser Probleme muss das Produktionsanlaufkonzept leicht verständlich und gut einsetzbar sein. Die Mitarbeiter sollten möglichst früh in die Entwicklung integriert werden, um eine frühe Bindung zu erreichen.

Das Konzept sollte so flexibel sein, dass es auch auf kundenspezifische Anforderungen reagieren kann.

3. Das Anlaufmanagement

Eine einleitende Definition für alle Tätigkeiten im Produktionsanlauf ergibt sich aus folgendem Zitat:
"Das Anlaufmanagement eines Serienproduktes umfasst alle Tätigkeiten und Maßnahmen zur Planung, Steuerung und Durchführung des Anlaufes mit den dazugehörigen Produktionssystemen, ab der Freigabe der Vorserie bis zum Erreichen

⁴ WiWi Forum http://www.wiwi-treff.de/
⁵ Forum des VDI auf deren Homepage im Mitgliederbereich
einer geplanten Produktionsmenge, unter Einbeziehung der vor- und der
nachgelagerten Prozesse im Sinne einer messbaren Eignung der Produkt- und
Prozessreife.“  

3.1. Der Serienproduktionsanlauf

Die Serienproduktionsanlaufphase dient dazu, ein neues Produkt, welches
durch die Entwicklung freigegeben wurde, in Serie zu produzieren. In Serie
produzieren bedeutet, ein Produkt kontinuierlich, stabil, in einer gewünschten
Anzahl zu produzieren.  

Der Serienanlauf beginnt, nachdem alle Produktkomponenten im
Prototypenbau ausgereift und im Produktzyklus integriert sind.

Zuvor müssen in der Anlaufplanung jedoch noch die Prototypenplanung, die
Serienplanung und die Verfügbarkeit aller Produktionsfaktoren sichergestellt
werden.

§ Die Prototypenphase wird zum Erlernen der Prozesse genutzt.
§ Die Serienplanung ist die Zielvorgabe.
§ Die Verfügbarkeit aller Produktionsfaktoren muss sichergestellt sein,
  um einen reibungslosen Ablauf zu garantieren.

Die gesamte Anlaufphase besteht aus der Anlaufplanung, der Nullserie
(Prototypenphase) und dem Produktionshochlauf. In diesen Phasen nehmen
folgende Faktoren Einfluss auf den Anlauf der Produktion eines Produktes:

§ Neuigkeitsgrad,
§ Komplexitätsgrad,
§ Qualität der Produktionsvorbereitung,
§ qualitatives Arbeitsvermögen,
§ Anlagenqualität,
§ unvorhersehbare Probleme,
§ Lieferanten.

---

6 In Anlehnung an: Ergebnisbericht zur Studie “Fast Ramp- Up - Schneller Anlauf von
  Serienprodukten”, Kuhn; Wiendahl; Schuh, 2002
7 In Anlehnung an die Definition http://de.wikipedia.org/wiki/Serienproduktion
<table>
<thead>
<tr>
<th>Einflussgrößen</th>
<th>Ausprägungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuigkeitsgrad</td>
<td>• Neuentwicklungen mit veränderter technologischer Struktur.</td>
</tr>
<tr>
<td></td>
<td>• Neuentwicklungen mit ähnlicher Struktur.</td>
</tr>
<tr>
<td></td>
<td>• Weiterentwicklungen der vorhandenen Struktur.</td>
</tr>
<tr>
<td>Komplexitätsgrad</td>
<td>• Anzahl und Vielfältigkeit der Bauteile</td>
</tr>
<tr>
<td></td>
<td>• Konstruktive Zusammensetzung</td>
</tr>
<tr>
<td></td>
<td>• Überschaubarkeit der Konstruktion</td>
</tr>
<tr>
<td></td>
<td>• Schwierigkeitsgrad der Fertigungs- und Montagemethoden.</td>
</tr>
<tr>
<td></td>
<td>• Anlagenkomplexität</td>
</tr>
<tr>
<td>Qualität der Produktionsvorbereitung</td>
<td>• Motivation der Werktätigen</td>
</tr>
<tr>
<td></td>
<td>• Technologische Reife der Produktionsfaktoren</td>
</tr>
<tr>
<td></td>
<td>• Qualität des Dokumentationswesens</td>
</tr>
<tr>
<td>Kommunikationsgrad</td>
<td>• Qualität der Kommunikation</td>
</tr>
<tr>
<td></td>
<td>• Quantität der Kommunikation</td>
</tr>
<tr>
<td></td>
<td>• Kommunikationsmöglichkeiten</td>
</tr>
<tr>
<td>Anlagenqualität</td>
<td>• Automatisierungsgrad</td>
</tr>
<tr>
<td></td>
<td>• Niveau der Instandhaltung</td>
</tr>
<tr>
<td>Qualitatives Arbeitsvermögen</td>
<td>• Qualifikation der Arbeitskräfte</td>
</tr>
<tr>
<td></td>
<td>• Berufserfahrung der Arbeitskräfte</td>
</tr>
<tr>
<td></td>
<td>• Betriebserfahrung mit Serienanläufen</td>
</tr>
<tr>
<td>Unvorhersehbare Probleme</td>
<td>• Probleme, die erst im Betrieb sichtbar werden</td>
</tr>
<tr>
<td>Lieferantenprobleme</td>
<td>• Lieferant kann nicht liefern</td>
</tr>
<tr>
<td></td>
<td>• Lieferant wurde zu spät informiert</td>
</tr>
<tr>
<td></td>
<td>• Es wurden falsche Anforderungen an das zu liefernde Produkt gestellt</td>
</tr>
</tbody>
</table>

Tabelle 2: Einflussgrößen im Anlauf

Diese Faktoren müssen in den Serienanlauf einfließen. Es handelt sich bei den Faktoren um steuerbare und planbare Faktoren, die den zeitlichen Verlauf eines Anlaufes und den Aufwand bestimmen. Zur Veranschaulichung dienen die nachstehende Abbildung und die tabellarische Übersicht der Einflussfaktoren:

---

8 In Anlehnung an Gustmann/ Rettschlag/ Wolff 1989, S.40
3.2. Die Kernziele im Produktionsanlauf

Das Anlaufmanagement wird in der heutigen Industrie zunehmend wichtiger, da die Produkte in immer kürzeren Lebenszyklen produziert werden, die

Die spezifischen Ziele, die hierbei verfolgt werden sind:

- die Einhaltung der erforderlichen Logistik für die Verfügbarkeit aller Bauteile im Serienanlauf,
- die Zeit des Serienanlaufes so kurz wie nötig zu gestalten,
- den Reifegrad des Produktes immer zu kontrollieren,
- alle notwendigen Informationen für jeden Teilnehmer zugänglich zu gestalten,

um die Gesamtkosten für den Anlauf auf ein Minimum zu reduzieren.

3.3. Die Hauptaufgabe eines Anlaufmanagements

Das Anlaufmanagement (Ramp-Up-Management\(^10\)) ist die Koordination aller zu erledigenden Tätigkeiten rund um den Produktionsanlauf, ausgehend vom frühesten möglichen Termin zur Information der Lieferanten über den geforderten Bedarf, bis zum Erreichen der Serienreife. Siehe hierzu auch die Abb. 4.

Um den Produktionshochlauf zu steuern wird aus den Einflussfaktoren eine Lernrate errechnet und die Anlaufphase bestimmt. Die Lernkurve, die die Zielvorgabe im Anlauf ist, setzt sich aus der Lernrate und der Anzahl der bis zur Serienreife zu produzierenden Bauteile zusammen. Die Lernrate ist ein prozentualer Wert, der die Degression der Lernkurve angibt.

---

\(^9\) Griech.: Zusammenarbeit
\(^10\) Engl.: Anlaufmanagement
3.3.1. Berechnung der Lernkurve

Die Degression der Lernkurve wird bestimmt durch die Einflussfaktoren des Produktionsanlaufes. Die Einflussfaktoren werden bewertet bzw. gemessen, aus den Werten wird die Lernrate berechnet.

Das Ziel, zu welchem Zeitpunkt oder mit welcher Stückzahl die Serienreife erreicht wird, wird vom Kunden vorgegeben.

Mit diesen Berechnungsgrundlagen kann ermittelt werden, wie groß die Durchlaufzeit für das erste Produkt oder die Einlaufzeit der Serienreife nach der Prototypenserie sein muss.

\[
  t(x) = t_0 \cdot e^{\frac{\ln d}{\ln x}}
\]

(d= Degression, x= Stückzahl, t0= Zeitpunkt 0, t(x)= Zeitpunkt Stück x)

Lernkurvenfunktion

3.4. Die Grundsätze eines Anlaufmanagements

Das Anlaufmanagement sollte unter Berücksichtigung der oben aufgeführten Aufgaben nach folgenden Grundsätzen konzipiert sein:

§ Es sollte transparent für alle Beteiligten im Wertschöpfungsnetzwerk\(^{11}\) gestaltet sein, um eine einheitliche Informationsbasis für jeden Teilnehmer zu schaffen.

§ Eine Integration aller Teilnehmer in die Fertigung, um die Abstimmungen der einzelnen Komponenten in der Fertigung, im Hinblick auf Qualität, Quantität und Zeit zu gewährleisten.

§ Die Daten im Kommunikationsnetzwerk sollten harmonisiert sein, um sie für jeden klar verständlich und auswertbar zu machen.

§ Die anlaufenden Prozesse sollten stetig überwacht und verbessert werden.

\(^{11}\) Alle am Prozess beteiligten Teilnehmer, die gemeinsam einen Gewinn fokussieren.
3.5. **Die Basis des Anlaufmanagements**


<table>
<thead>
<tr>
<th>Zitat</th>
<th>„I believe that the Toyota Group companies are better at implementing the ongoing kaizen activities associated with the TPS… I think we are better at learning“[13]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>„Der Schlüssel für die Verbesserung der Anläufe ist der Ausbau formaler Planungssystematiken. Wir müssen Aufgaben und Verantwortlichkeiten mit unseren Lieferanten besser abstimmen und kritische Bauteile frühzeitig identifizieren.“[14]</td>
</tr>
</tbody>
</table>

**Tabelle 3: Interorganisationales Arbeiten**[15]

3.6. **Interorganisationale Zusammenarbeit**

Interorganisationale Zusammenarbeit bedeutet, dass die Zusammenarbeit in einem Wertschöpfungsnetzwerk aus verschiedenen Teilnehmern in drei verschiedenen Ebenen funktioniert und gehandhabt wird.

---

12 Zusammenarbeit auf allen Ebenen (jeder mit jedem).
13 Michio Tanaka, General Manager of International Purchasing, Toyota
14 Dr. Hartmut Graf, Logistikleiter, DC Werk Sindelfingen
15 In Anlehnung an „Anlaufmanagement in Netzwerken“, D. Fitzek 2006, Haupt
Dies bedeutet, es wird in horizontaler, vertikaler und diagonaler Ebene miteinander gearbeitet. Dieses ist eine Grundannahme, auf der auch neuere Produktions- und Logistikmanagementkonzepte sowie das bekannte "Supply Chain Management"\textsuperscript{16} basieren.

Aufgrund dieser engen Zusammenarbeit werden die verfolgten Ziele effektiver\textsuperscript{17} und effizienter\textsuperscript{18} erreicht.

Voraussetzungen zum interorganisationalen Arbeiten sind,

- eine gemeinsame Basis für alle im Netzwerk tätigen Parteien zu erstellen,
- eine gemeinsame Sprache zu definieren, um Missverständnissen vorzubeugen,
- Hilfe zu geben und anzunehmen,
- Informationen zu geben und zu nehmen
- für Probleme eines Teilnehmers aufgeschlossen zu sein und sich Zeit zu nehmen
- ein gemeinsames Produktionsanlaufkonzept zu entwickeln, um eine Grundlage für das Arbeiten für jeden Mitarbeiter zu haben.

\textsuperscript{16} Engl.: Lieferantenkettenorganisation
\textsuperscript{17} Direkt ans Ziel
\textsuperscript{18} Mit möglichst wenig Aufwand ans Ziel
3.7. Ziele der interorganisationalen Zusammenarbeit

Ziel einer interorganisationalen Zusammenarbeit ist es, miteinander zu planen und voneinander zu lernen. Wenn dieses geschieht ist der Wirkungsgrad\(^{19}\) eines Wertschöpfungsnetzwerkes in einer stetigen Entwicklung zum Positiven, wobei immer die Risiken des Erlernten oder der vermeintlich besseren Methode\(^{20}\) überprüft werden müssen, um der Gefahr einer negativen Entwicklung aus dem Weg zu gehen.

3.8. Die Bestandteile eines Anlaufmanagements

Aus den Erkenntnissen, den Brainstormings, den Literaturrecherchen und Diskussionen, den Umfragen sowie den Mitarbeiterinterviews ergaben sich sieben Hauptbestandteile, die ein Anlaufmanagement beinhalten muss:

- Projektmanagement
- Lieferantenmanagement
- Qualitätsmanagement
- Prozessmanagement
- Änderungsmanagement
- Kostenmanagement,
- Controlling

\(^{19}\) Verhältnis vom Ausgang zum Eingang

\(^{20}\) Griech.: das Nachgehen, Verfolgen, die Verweglichung, Wegebung, der Weg
Abbildung 7: DMAIC-Kreislauf für Six Sigma Projekte

Diese stellen sich wie in der Grafik ersichtlich auf und erfordern eine Zusammenarbeit in Projektform, die das personelle, finanzielle, qualitative, funktionelle und leistungsorientierte Spektrum eines Produktionsanlaufs ganzheitlich betrachtet.

Das Projekt sollte durchgehend nach folgenden Phasen durchlaufen werden.

- Definition des Projektes,
- die Einflussfaktoren des Projektes messbar machen,
- die gemessenen Werte analyseren und aufbereiten,
- Ideen zur Optimierung der Projekte dokumentieren und prüfen
- und die Optimierungen in die Projekte einfließen lassen und überprüfen.

Um die Bearbeitung des gesamten Projektes übersichtlicher zu gestalten und daher leichter bearbeitbar zu machen, gilt es, das Projekt in Unterprojekte zu
gliedern und diese ebenfalls nach der beschriebenen Methodik zu durchlaufen.

3.8.1.  Projektmanagement

Das Projektmanagement arbeitet auf drei verschiedene Arten und wird durch diese definiert:

§ Institutional
   o Das Projektmanagement beschäftigt sich mit der Einordnung des Projektes in die Aufbauorganisation des Unternehmens. Es ordnet das Projekt in die Kommunikations- und Entscheidungsstrukturen des Unternehmens ein.

§ Funktional
   o Das Projektmanagement ordnet das Projekt in die Ablauforganisation des Unternehmens ein. Es plant, steuert und kontrolliert die Einzelnen, zum Projekt gehörenden Arbeitsschritte.

§ Instrumental
   o Das Projektmanagement bestimmt die Methoden und Verfahren, die dem Erreichen des Projektzieles dienen.


---

21 Definition des Projektmanagements in Anlehnung an „Grundzüge des Projektmanagements“, Harry Zingel, Version 3.3, 2000-2005
Das Projektmanagement leitet die Gesamtheit der Führungsaufgaben, Techniken, Organisationen und Mittel. Es dient der Strukturierung, Bearbeitung und Überschaubarkeit eines Projektes.\textsuperscript{23}

Das Projektteam für einen Produktionsanlauf baut sich auf aus einem Projektleiter und seinem Projektteam. Das Projektteam für ein Produktionsanlaufprojekt sollte aus den interdisziplinären Fachkompetenzen

$\bullet$ Qualität,
$\bullet$ Logistik,
$\bullet$ Fertigung/ Produktion,
$\bullet$ Konstruktion,
$\bullet$ Personal

bestehen.

Der Projektleiter hat die Aufgabe, mit dem Kunden eine Projektdefinition\textsuperscript{24} zu erstellen, aus der ein Meilensteinplan\textsuperscript{25} und ein Gatewaykonzept\textsuperscript{26} entwickelt werden können. Zudem ist er für die interorganisationale Zusammenarbeit aller Beteiligten und für die Einhaltung von Terminen, Kosten und Qualität

\textsuperscript{22} In Anlehnung an das Magische Dreieck von \url{http://www.pmqs.de}
\textsuperscript{23} Projektmanagement definiert nach der DIN 69901
\textsuperscript{24} Grundlage für die Ziele, Aufgaben, Ausgangssituation und Termine
\textsuperscript{25} Gantt-diagramm zur visuellen Darstellung des Projektverlaufs
\textsuperscript{26} Schranken/ Grenzen, an denen die IST-/ SOLL-Vergleiche stattfinden sollen
zuständig. Er steuert den Projektfortschritt und bietet bei Problemen Lösungen an.

Das Projektteam ist verantwortlich in der Vorbereitungsphase für

§ die Erarbeitung und Analyse von Kunden- und Anlaufwissen,
§ die Planung der Produktionsfaktoren in der Projektlaufzeit,
§ die Kunden- und Lieferantenintegration.

In der Startphase des Projektes erstellt das Team eine Projektspezifikation bestehend aus

§ Projektcharta,
§ Teilnehmern des Wertschöpfungsnetzwerkes,
§ Kommunikationsregeln,
§ Eskalationsregeln,
§ Verantwortlichkeiten.

In der Durchführung des Produktionsanlaufes liegen die Aufgaben des Projektteams in der Einhaltung der festgelegten Ziele, der Termine, der Kosten und der Qualität. Das Projektteam

§ validiert\(^{27}\) die Fertigungsprozesse unter Serienbedingungen,
§ übergibt bei Problemen an das Änderungsmanagement,
§ erstellt Trainings für die Mitarbeiter im gesamten Prozess,
§ stellt die Verfügbarkeit aller Produktionsfaktoren im Prozess sicher,
§ führt Qualitätssicherungen durch und überprüft deren Einhaltungen,
§ stabilisiert alle Prozesse.

Im Projektmanagement wird ebenfalls eine Kommunikationsplattform für alle Teilnehmenden geschaffen, die eine durchgängige und geregelte Kommunikation ermöglicht. Die Kommunikationswege und Formen können in einem Kommunikationshandbuch festgelegt sein. Die Kommunikationsplattform kann aus folgenden Einheiten bestehen:

§ Forum / Plenum,

\(^{27}\) Lat.: Prüfung einer These
§ softwaregebundene DB\textsuperscript{28},
§ Schriftverkehr mit Kopie an alle,
§ bei kleineren Projekten Telefonkonferenzen.

Die Ergebnisse bei Konferenzen müssen stets dokumentiert und als Protokoll für alle Beteiligten aufgearbeitet werden.

Der Erfolg eines Projektmanagements lässt sich an den Projektindikatoren festmachen. Es werden auch Prognosen über ein Projekt an Hand dieser Indikatoren gemacht. Sie geben Auskunft über die Erfolgswahrscheinlichkeit eines Projekttes. Die Indikatoren werden in drei Kategorien eingeteilt:

§ direkt gestaltbare Indikatoren,
§ teilweise gestaltbare Indikatoren,
§ indirekt gestaltbare Indikatoren.

Hier zur Veranschaulichung eine tabellarische Darstellung der Projektindikatoren. Die Indikatoren ermöglichen es, ein Projekt zu messen, zu bewerten und zu regeln.

\begin{table}
\begin{tabular}{|c|c|c|}
\hline
Direkt gestaltbare Indikatoren & Teilweise gestaltbare Indikatoren & Indirekt gestaltbare Indikatoren \\
\hline
beherrschte Komplexität & erzielbarer Fortschritt & stützender Rahmen \\
\hline
erkannter Bedarf & vertrauensvolle Kooperation & willige Empfänger \\
\hline
befähigtes Team & & \\
\hline
\end{tabular}
\end{table}

Tabelle 4: Projektindikatoren\textsuperscript{29}

\textsuperscript{28} Datenbank
\textsuperscript{29} In Anlehnung an http://de.wikipedia.org/wiki/Projektindikatoren
3.8.2. Qualitätsmanagement

Das Qualitätsmanagement hat das Ziel, die Einhaltung der Qualitäts- und Funktionsvorgaben zu überwachen und gegebenenfalls eine Änderung herbeizuführen.

Das Qualitätsmanagement wird meistens nach dem Demingkreis ausgerichtet. Dieser beinhaltet die Regelung der Vorgaben. Die Prämissen sind

- § Qualitätsplanung (nach den vorhandenen IST- Zuständen werden Konzepte entworfen),
- § Qualitätssteuerung (das Implementieren der Planungskonzepte),
- § Qualitäts sicherung (Analysieren und Auswerten der Qualitätsziele aus den Konzepten),
- § Qualitätsverbesserungen (die aus den Analysen gewonnen Ergebnisse, die von den Vorgaben abweichen, müssen einen Änderungsgrund hervorrufen).

Das Qualitätsmanagement soll unter der Prämisse „immer so viel wie nötig und nicht so viel wie möglich“ laufen, da ansonsten das Kosten/ Nutzen Verhältnis nicht gewahrt wird. Es sollte also eine klare Zielvorstellung mit dem Kunden erarbeitet werden, die es zu erreichen gilt und nicht zu übertreffen. Hier können natürlich zusätzliche Features für den Kunden mit hineinkommen, die die Kundenzufriedenheit erhöhen. Bei größerem Umfang der Zusatzarbeiten sollten Folgeprojekte generiert werden, um den Projektrahmen einzuhalten.

Das Qualitätsmanagement hat die Kernziele, die Funktion und Qualität von Produkt und Prozess zu beschreiben und zu überwachen.

Die Funktionen des Produktes und der Prozesse im Produktionsanlauf werden anhand des Reifegrades bestimmt. Der Reifegrad eines Produktes wird über Indikatoren desselben definiert. Die Indikatoren werden stetig bis zur Zufriedenstellung des Kunden bearbeitet (so viel wie nötig, nicht so viel

---

30 Demingkreis, für: Bearbeitungskreislauf (Plan Do Check Act)
31 Die Aufgabe und der Zweck, die ein Element in einem System erfüllt.
wie möglich). Das Produkt sollte alle benötigten Funktionsfaktoren erfüllen, nicht mehr und nicht weniger.

Der Reifegrad des Produktionsanlaufprozesses wird stetig gemessen und bewertet.

Beispiel Produktreifegrad:
Der Kunde möchte, dass sein Flugzeug ein Innenvolumen von 50 m³ hat. Somit wird auch eines mit 50 m³ konstruiert und nicht eines mit 100 m³ Innenvolumen. Es werden also die Anforderungen des Kunden erfüllt.

Beispiel Prozessreifegrad
Die Qualität eines Produktes wird hinsichtlich der Funktions- und Konstruktionsvorgaben überprüft und überwacht. Hierbei wird untersucht, ob diese im Toleranzbereich der vom Kunden gewünschten Anforderungen sind oder ob in den Prozess eingegriffen werden muss, um die Produktanforderungen zu erfüllen.


Beispiel:

Die Qualität eines Prozesses wird an den Bedürfnissen des Prozesses und an den Fertigungsmethoden festgemacht. Somit lässt sich die Qualität eines

---

32 Prozessfluss (meistens visuell)
Prozesses an der Zeit der Bearbeitung, an den Personalaufwandskosten und an den Fertigungsmethoden bestimmen und auch verändern.

3.8.3. Änderungsmanagement

Das Änderungsmanagement dient in erster Linie der Optimierung des gesamten Prozesses und der Integration von Neuerungen bzw. Verbesserungen. Es gibt einen strukturierten Ablauf wieder, der durchlaufen wird, wenn ein Änderungsbedarf auftritt. Änderungsbedarfe treten immer dann auf, wenn die Funktion eines Prozesses gefährdet ist, also wenn die Soll-Werte nicht erreicht werden.

Das Änderungsmanagement besteht im Wesentlichen aus einer Änderungsroutine. Diese tritt ein, wenn ein Änderungsgrund vorliegt und diese endet mit einer positiven Änderung am Produkt oder einem Prozess.

Um diese Änderungsroutine durchzuführen müssen folgende Anforderungen erfüllt sein:

1. Es muss einen Änderungsgrund geben.
2. Es müssen alle von der Änderung betroffenen Prozesse abgestimmt werden.
3. Der Änderungsgrund muss bestätigt werden.

Sind diese Punkte erfüllt, kann die Änderungsroutine gestartet werden:

1. Änderungsidee
2. Auslösung Änderungsvorhaben
3. Vorabklärung
4. Detaillierung
5. Abstimmung mit dem Kunden
6. Genehmigung der Wertgrenzen
7. Konstruktive Umsetzung
8. Produktive Umsetzung
9. Die Änderung wird kontrolliert
   a) bei einer negativen Änderung beginnt diese Kette erneut
   b) bei einer positiven Änderung wird diese in den Gesamtprozess implementiert
3.8.4. Lieferantenmanagement

Das Lieferantenmanagement wird als Bearbeitung aller mit den Lieferanten zusammenhängenden Tätigkeiten definiert. Es hat als Kernziele, die Verfügbarkeit aller Produktionsfaktoren rechtzeitig zum SOP\textsuperscript{33} zu ermöglichen und die optimalen Lieferbedingungen zu schaffen sowie die Einhaltung dieser Bedingungen zu implementieren. Das Lieferantenmanagement sieht jeden Teilnehmer im Wertschöpfungsnetzwerk als Lieferanten und Kunden. Durch diese Sichtweise werden alle Prozesse, ob intern oder extern, betrachtet und analysiert. Hierbei helfen dem Lieferantenmanagement folgende Hauptbestandteile:\textsuperscript{34}

- die Lieferantenstruktur/ -beziehungen,
- Lieferantenstrategien,
- Segmentierung der Lieferanten,
- Lieferantenbewertung/ -beurteilung,
- Lieferantenauswahl,
- Lieferantencontrolling,
- Lieferantenentwicklung,
- Lieferantenintegration,
- Lieferantenlogistik.

Durch den Aufschluss dieser Bestandteile kann eine Optimierung erreicht und ausgearbeitet werden.

3.8.4.1. Lieferantenstruktur

Die Lieferantenstruktur beschreibt und koordiniert die Zusammenarbeit der Lieferantenkette (Unterlieferant, Lieferant, Kunde usw.). Die Abhängigkeiten der Lieferanten zueinander werden beschrieben, ebenso wie die Arbeitsumfelder der einzelnen Lieferanten.

\textsuperscript{33} Start of Production
\textsuperscript{34} Definition des Lieferantenmanagements in Anlehnung an „Lieferantenmanagement Band 11“, Horst Hartmann, Deutscher Betriebswirteverlag 2004

### 3.8.4.1.1. Opportunistische Beziehung

Die opportunistische Beziehung sollte eher bei standardisierten Massenprodukten zum Einsatz kommen, da hier die Abhängigkeit von einem bestimmten Lieferanten nicht so groß ist. Bei qualitativer Leistungs- oder Kostenzufriedenheit kann hier schnell, durch das Ausweichen auf eine Lieferantenalternative, reagiert werden.\(^{36}\)

### 3.8.4.1.2. Partnerschaftliche Beziehung


### 3.8.4.2. Lieferantenstrategien

Die Lieferantenstrategie zielt auf die Kernpunkte der Zusammenarbeit mit Lieferanten ab. Es muss kontinuierlich hinterfragt werden, mit welchem Lieferanten man wie zusammenarbeitet. Hier helfen zur Beschreibung der Zusammenhänge ein Lieferantenportfolio und die visuelle Beschreibung der Lieferantenbeziehungen. In den Lieferantenportfolios legt das Unternehmen die langfristigen Ziele für die Zusammenarbeit mit den Lieferanten fest.

---


\(^{36}\) lat. opportunus: günstig, bequem
Hierdurch entsteht die Lieferantenbasis, die zur Auswahl der Lieferanten benötigt wird.

3.8.4.3. Lieferantensegmentierung

Die Lieferantensegmentierung dient zur Übersicht der Lieferanten und soll zur frühzeitigen Behandlung von Problemen genutzt werden. Hierfür werden die Lieferanten in Paretoanalysen\(^\text{37}\) in die ABC-Klassifizierung überführt und dementsprechend beobachtet. Hierbei zählen Kerngrößen wie

- das Beschaffungsvolumen,
- die Performance des Lieferanten,
- die Entwicklungskompetenz,
- die Fertigungskompetenz,
- und die strategische Bedeutung.

3.8.4.4. Lieferantenbewertung

Die Lieferantenbewertung ergibt einen Überblick über die Lieferanten und ihre Eigenschaften wie Termintreue, Kosten, Bedarfserfüllung und subjektive Werte wie eine Selbstbeurteilung des Lieferanten oder auch das eigene Bauchgefühl.

Durch die Lieferantenbewertung gibt es eine Lieferantenauswahl und eine alternative Lieferantensuche für etwaige Störungen bzw. bei Engpässen, die vorher nicht geplant werden konnten.

Bei der Beurteilung der Lieferanten liegen die vorausgegangenen Punkte zu Grunde. Es wird entschieden, ob die Auswahl des Lieferanten nach Angebotsvergleich oder nach einer ganzheitlichen Betrachtung erfolgt. Die Bewertung für die Auswahl nach Angebotsvergleich ergibt sich aus einer opportunistischen, risikoarmen und strategischen Planung.

Die Auswahl nach einer ganzheitlichen Betrachtung ergibt sich aus einer partnerschaftlichen, risikoreichen und strategischen Planung.

\(^{37}\) Die Paretoanalyse, benannt nach dem italienischen Ingenieur, Soziologen und Ökonom Vilfredo Pareto (1848–1923)
3.8.4.5. Lieferantenauswahl

Die Lieferantenauswahl erfolgt nach den Vorgaben der Lieferantenbewertung und wählt die am besten geeigneten Lieferanten für das jeweilige Zulieferprodukt aus.


3.8.4.6. Lieferantencontrolling

Das Lieferantencontrolling legt an Hand der Lieferantenroadmap Messpunkte für die Lieferantenüberwachung fest. Diese dienen der Überwachung der Prozessströme auf Abweichungen sowie der Zukunftsplanung. Sie werden vom Controlling\(^{38}\)-management durchgeführt und als Monitoring\(^{39}\) und Reporting\(^{40}\) dem Lieferantenmanagement übergeben. Zudem könnten vom Lieferantenmanagement Forecastindicators\(^{41}\) entwickelt/ abgeleitet werden, um im Vorfeld Lieferanten zu unterstützen und Probleme gar nicht erst auftreten zu lassen.

Das Lieferantencontrolling überwacht und steuert an Hand der Lieferantenlogistik und der Entwicklung der Zusammenarbeit mit den Lieferanten die Funktion des Lieferanten.

3.8.4.7. Lieferantenentwicklung

Die Lieferantenentwicklung beschreibt die Lieferantenfunktionen über die Zeit. Das heißt, die Termintreue, die Kosten, die Qualität, die Innovationslust und die Zusammenarbeit werden über die Zeit betrachtet und der Trend dieser Faktoren wird verfolgt. Zum einen werden hieraus Prognosen für die Zusammenarbeit in der Zukunft erstellt und zum anderen wird eine

---

\(^{38}\) Engl.: Regelung/ Steuerung  
\(^{39}\) Engl.: Aufzeigen von Sachverhalten  
\(^{40}\) Engl.: Berichten  
\(^{41}\) Engl.: Vorabindikatoren (um Sachverhalte in der Zukunft vorherzusagen)
3.8.4.8. Lieferantenintegration
Die Lieferantenintegration beruht auf der jeweiligen Vertrauensbasis zum Lieferanten. Es muss genau entschieden werden, inwieweit der Lieferant in die Produktions- und Geschäftsprozesse mit einbezogen werden soll und es muss beobachtet werden, welche Effektivität die Zusammenarbeit hat. Für eine gut funktionierende Integration muss somit ein sehr gutes Vertrauensverhältnis bestehen. In einem solchen Vertrauensverhältnis wird die Abhängigkeit zu einander sehr hoch und man muss sich auf seine Geschäftspartner verlassen können. Ist dies alles gegeben steht einer guten Zusammenarbeit und der stetigen Verbesserung nichts mehr im Wege, da die Abstimmungen untereinander perfektioniert werden können.

3.8.4.9. Lieferantenlogistik

Die Lieferantenlogistik koordiniert die logistischen Faktoren in dem kompletten Lieferantennetzwerk, wobei viele Tätigkeiten in untere Ebenen delegiert werden können.

§ Wer liefert welches Bauteil?

42 Engl. Just in time: zeitnah
Wer liefert in welcher Menge?
Wer liefert zu welcher Qualität?
Wer liefert an welchen Ort?
Wer liefert zu welcher Zeit?
Wer liefert und für wen?
Wer hat wo Probleme?
Was kann gegen diese Probleme getan werden?

Anhand dieser Einflussgrößen/ Kennzahlen wird das Lieferantennetzwerk geplant und geregelt.

Durch das Lieferantenmanagement soll eine Optimierung der Supply Chain erreicht werden. Es sollen insbesondere der bullwhip-effect verhindert oder aber auch Win-Win Situationen geschaffen werden.

3.8.5. Prozessmanagement


---

43 Engl.: Lieferantenkette
44 Engl.: Peitschenhiebeffekt
45 Alle Beteiligten Parteien gehen mit einem Gewinn aus der Situation.
46 Engl.: Ein- und Ausgänge
47 Engl.: Lieferant
48 Engl.: Kunde
49 Schaubild nach der Six Sigma Methode (Supplier/ Input/ Prozess/ Output/ Customer)

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Input</th>
<th>Process</th>
<th>Output</th>
<th>Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lieferant</td>
<td>Einzelteile</td>
<td></td>
<td>Fertige Bauteile</td>
<td>Kunde</td>
</tr>
<tr>
<td>Arbeitsmarkt</td>
<td>Arbeitskraft</td>
<td></td>
<td>Defekte Bauteile</td>
<td>QM</td>
</tr>
<tr>
<td>EVU</td>
<td>Energie</td>
<td></td>
<td>Abfallprodukte</td>
<td>Entsorger</td>
</tr>
<tr>
<td>Bank/ Firma</td>
<td>Investition</td>
<td></td>
<td>Schmutz</td>
<td>Reinigung</td>
</tr>
<tr>
<td>Lieferant</td>
<td>Betriebsmittel</td>
<td></td>
<td>Gewinne/ Verluste</td>
<td>Firma</td>
</tr>
<tr>
<td>Werkzeugmacher</td>
<td>Werkzeug</td>
<td></td>
<td>Defektes Werkzeug</td>
<td>Werkzeugmacher</td>
</tr>
</tbody>
</table>

Abbildung 9: Prozessbeschreibung mit Hilfe eines SIPOC’s

### 3.8.5.1. Die Prozessplanung

Die Prozessplanung beinhaltet die Vorgaben, die erreicht werden sollen im Serienbetrieb. Diese Ziele gelten als Berechnungsgrundlagen und als Vorgaben, die es anzustreben gilt. Im Probelauf wird deutlich, wo Probleme liegen und wo eingegriffen werden muss bzw. Änderungen implementiert werden müssen.

---

50 Engl.: Arbeitsfluss/ Prozessfluss
3.8.5.2. Die Prozesssteuerung/-regelung

Die Prozesssteuerung muss eine Planung für die Beseitigung von Störungen im Prozess beinhalten. Diese Planung regelt, welche Störung, zu welchem Zeitpunkt, mit welchen Mitteln und mit welcher Verantwortlichkeit bearbeitet werden (Prozess FMEA\textsuperscript{51}) muss. Hier kommt auch eine Regelung in Betracht, die sich eigenständig dem Optimum annähert. Ziel der Prozessregelung ist es, einen optimierten, statistisch kontrollierten und damit qualitätsfähigen Prozess der laufenden Fertigung in diesem Zustand zu stabilisieren. Dazu wird der Prozess kontinuierlich, z.B. mit Hilfe von Regelkarten beobachtet, durch die Berechnung der Prozessfähigkeitsindizes\textsuperscript{52} bewertet und über geeignete Korrekturmaßnahmen im Sinne einer Fehlervermeidung geregelt.

3.8.5.3. Die Prozessoptimierung

Die Prozessoptimierung verfolgt folgende Ziele:

- die Qualität der Prozesse soll verbessert werden,
- die Prozesse sollen vereinheitlicht werden,
- eine schnellere und zuverlässigere Bearbeitung von Kundenaufträgen soll erreicht werden,
- die Transport- und Liegezeiten sollen verkürzt werden (Verbesserung von Durchlaufzeiten),
- die Bearbeitungszeiten und damit die Kosten sollen reduziert werden,
- die Informationsverfügbarkeit soll erhöht werden,
- die Flexibilität der Prozesse soll erhöht werden,
- die Durchlaufzeiten sollen durch den kontrollierten Fluss von Daten und Dokumenten innerhalb der Unternehmen verringert werden,
- die Kosten sollen durch Zeit- und Ressourcen-Optimierung reduziert werden
- die Transparenz der Prozesse soll erhöht werden (Statusermittlung, Dokumentation von Entscheidungen)
- die Datenqualität der Stammdaten soll verbessert werden

\textsuperscript{51} FMEA für: Fehler Möglichkeits- und Einflussanalyse
\textsuperscript{52} Indikatoren, die für einen stabilen Prozess benötigt werden.
Der Grad der Zielerreichung lässt sich mit folgenden Kennzahlen gut bestimmen:

§ Durchlaufzeiten (zur Planung, wann man welche Ergebnisse erhält),
§ Liegezeiten (wie viel Potenzial ist durch Zeitenoptimierung noch im Prozess?),
§ Rüstzeiten (wie oft wird die Arbeitsaufgabe gewechselt und mit welchem Zeitpotenzial?),
§ Einarbeitungsphasen (wie häufig werden neue Arbeiten erlernt und mit welchem Umfang?),
§ Arbeitszeiten (wie lange braucht jemand für einen bestimmten Prozess?).

3.8.6. Leistungs- und Kostenmanagement

Im Leistungs- und Kostenmanagement werden die Einsatzmittel geplant, die zu erwartenden Leistungen und Kosten geschätzt, geplant (kalkuliert) und die Leistungen und Kosten gesteuert.

Die Vorgaben des Kunden, das Budget\textsuperscript{53}, und die gewünschte Leistung geben die Grundwerte vor, die einzuhalten sind. Um dieses zu erreichen, werden die Kosten\textsuperscript{54}, die Arbeit\textsuperscript{55} und die Leistungen\textsuperscript{56} geschätzt, kalkulatorisch\textsuperscript{57} bestimmt und gesteuert. Ziel dieser Maßnahmen ist es, das Budget immer einzuhalten.


\textsuperscript{53} Plan von zukünftig erwarteten Einnahmen und Ausgaben
\textsuperscript{54} Verbrauch an Produktionsfaktoren
\textsuperscript{55} Produkt aus Leistung und Zeit
\textsuperscript{56} Energiegröße
\textsuperscript{57} Lat.: rechnerisch
Die Kosten setzen sich aus
- Herstellungskosten,
- Fertigungskosten,
- Materialkosten,
- Maschinenkosten,
- Personalkosten,
- Betriebsverbrauchskosten,
- und Rüstkosten
zusammen.

Die Leistungen setzen sich aus
- Maschinenleistung,
- und Personalleistung
zusammen.

3.8.7. **Controlling**

Controlling\textsuperscript{58} ist ergebnisorientiertes Analysieren, Planen und Implementieren von Einflussgrößen und Ausgangsgrößen. Dies bedeutet, dass das Controlling Daten beschafft/ bekommt, diese aufbereitet, die Daten analysiert und die Ergebnisdaten/ Informationen weiter kommuniziert.

Das Controlling dient der Ausarbeitung von Einflussgrößen/ Kennzahlen durch Analysen. Diese werden zu einem Monitoring und Reporting für die jeweils zuständigen Managementbereiche aufgearbeitet.

Das Controlling hat die Aufgabe, die benötigten Kennzahlen bzw. Messwerte aufzunehmen und die Datenhaltung zu sichern. Das Controlling könnte auch softwaregesteuert sein, z.B. durch ein BDE\textsuperscript{59} mit Self- Monitoring, -Analysis and -Reporting Technology\textsuperscript{60} so dass die Daten wie gewünscht von einem zentralen Rechner verwaltet werden.

Es wird unterschieden in operatives und strategisches Controlling, wobei beide nach ihrer Bezeichnung handeln. Ein operatives Controlling arbeitet direkt mit zeitnahen Daten zur schnellen Lösungsfindung. Das strategische Controlling dient der Planung über einen längeren Zeitraum, wobei

\textsuperscript{58} Das Regeln des Projektes  
\textsuperscript{59} Betriebsdatenerfassung  
\textsuperscript{60} Automatisierte Ausarbeitung der BDE-Daten
prognostiziert und die Einhaltung der Prognosen überwacht wird. Es kann aber ebenfalls ein Frühwarnsystem entwickelt werden. 


Das Controlling im Anlaufmanagement übernimmt die Auswertung der Daten. Um den gesamten Prozess zu beschreiben, werden Kennzahlen benötigt:

- der Wirkungsgrad des Materialflusses,
- der Wirkungsgrad der Montage,
- die Produktivität des Aufwands (Arbeitszeit),
- die Produktivität des Aufwands (Kosten).

Diese Kennzahlen geben Aufschluss über die Funktion des Prozesses.

Im Projektmanagement gibt es folgende Indikatoren zur Beurteilung des Erfolges:

- beherrschte Komplexität (Vergleich Sollwert und Istwert)
- erkannter Bedarf (Sollwert und Istwert)
- Befähigung im Team (alle Spezialisten vorhanden?)
- erzielbarer Fortschritt (erkannte Potenziale genutzt?)
- vertrauensvolle Kooperation (nur teilweise messbar)
- stützender Rahmen des Projektes (nicht messbar)
- willige Empfänger (nicht messbar)

Im Bereich der Qualitäts- und Funktionsanalysen:

- Erfüllt das Produkt die geforderten Funktionen?
- Erfüllt das Produkt die geforderte Qualität?
- Erfüllt der Prozess die geforderten Funktionen?
- Erfüllt der Prozess die geforderte Qualität?

Im Prozessmanagement:

- Prozesseingangsgrößen
§ Prozessausgangsgrößen
Im Kosten- und Leistungsmanagement:
§ kalkulatorische Kosten
§ entstandene Kosten
§ kalkulatorische Leistung
§ entstandene Leistung
Im Lieferantenmanagement:
§ Wer?
§ Was?
§ Quantität?
§ Qualität?
§ Wohin?
§ Wann?
§ Für wen?

3.8.7.1. Kennzahlen
Kennzahlen\(^{61}\) sind direkte Messwerte (originäre Werte) oder aus Messwerten ermittelte Werte (abgeleitete Werte), die zur Beurteilung von Prozessen dienen. Sie helfen bei der Verdichtung oder Gegenüberstellung von Information und Wissen. Sie sollen möglichst klare aussagekräftige Informationen liefern.

„If you can´t measure it, you can´t manage it!“\(^{62}\)

Eine Kennzahl besteht also aus einem oder mehreren gemessenen Werten. Die Kennzahl
§ verdichtet Informationen,
§ setzt Werte zueinander ins Verhältnis,
§ oder vergleicht Werte mit einem Richtwert.
Kennzahlen sind entweder objektiv\(^{63}\) oder subjektiv\(^{64}\). Objektive Kennzahlen haben einen festen Nullpunkt wie z.B. Kosten, Zeiten oder auch Mengen. (kardinale Skala). Subjektive Kennzahlen sind immer vom Betrachter

\(^{61}\) Sprechende Zahlen (Zahlen, die Informationen enthalten)
\(^{62}\) [http://www.4managers.de/themen/kennzahlen/](http://www.4managers.de/themen/kennzahlen/), Peter F. Drucker, 30.08.2006
\(^{63}\) Gegenständliche Tatsache, unabhängig vom Subjekt
\(^{64}\) Gefühlte Umstände, je nach Subjekt unterschiedlich
abhängig und werden nach Gefühl benutzt, wie z.B. Schulnoten, Fuzzy logic oder auch Boolean logic (ordinale Skala).

Zudem teilen sich Kennzahlen in relative und absolute Werte auf, wobei die relativen Kennzahlen eine Relation zu einem Bezug wiedergeben und absolute Werte ohne eine Referenz auskommen.


Die Kennzahl dient also

§ zur Überwachung der einzelnen Prozesse,
§ zur Beschreibung der eigenen Tätigkeiten,
§ zur Information der beteiligten Partner,
§ zum Benchmarking\(^{65}\) von mindestens zwei Sachverhalten.

3.8.7.2. Einflussgrößen

Einflussgrößen sind alle Faktoren, die in einen Prozess Einfluss nehmen können. Einfluss nehmen sowohl die messbaren Werte (Kennzahlen) als auch die subjektiven Größen, wie z. B. die Mitarbeitermotivation, die Mitarbeiterqualifikation und die Umwelteinflüsse. Diese versucht man zwar messbar zu machen, um mit ihnen eindeutig planen zu können. Sie weisen dennoch immer subjektive Abweichungen auf. Daher ist es sinnvoll, diese über die Zeit zu betrachten. Der Mittelwert der zeitlichen Betrachtung wird stetig genauer. Es gibt z.B. Messungen über Mitarbeitermotivation, die deutlich machen, dass 80% der Mitarbeiter nachmittags weniger motiviert sind als vormittags und in der Produktivität spiegelt sich am Nachmittag in einem Unternehmen wider, dass diese Messung zum Teil stimmt.\(^{66}\)

\(^{65}\) Engl.: Maßstab setzen, dient zum Vergleichen
\(^{66}\) In Anlehnung an das Forschungsprojekt „Mitarbeitermotivation“ der Universität Karlsruhe, http://www.uni-karlsruhe.de
4. Analyse des Produktionsanlaufs der Rumpfmontage des A400M


Nachfolgend werden an Hand der A400M-Struktur-Rumpfmontage die beschriebenen Bestandteile des Anlaufmanagements durchlaufen und mit den Ist-Zuständen bearbeitet. Wie in Abb. 3 dargestellt, wird hier der Produktionsanlauf von Takt 1 bis zum Takt 4 beschrieben und analysiert. Die einzelnen Bestandteile des Anlaufmanagements werden an dem Beispiel des A400M exemplarisch durchleuchtet und auf ihren Nutzen gegenüber den derzeitigen Vorgehensweisen überprüft. In der jeweiligen Beurteilung werden auch Vorschläge für die Verbesserungen aufgezeigt und angeboten.


4.1. Beschreibung der Kommunikationsplattform beim A400M

Im Rahmen des Produktionsanlaufs vom A400M wird zurzeit in Teamrunden der jeweiligen Arbeitsgruppe oder auch in Expertenrunden (Leitungen aller Teams) kommuniziert. Es gibt außerdem softwareunterstützte Terminierungen sowie Daten- und Dokumentenaustausch über Tools wie Outlook oder ein Intranet.

---

67 Lat.: beispielhaft
68 Expertenrunden setzen sich aus den Leitungen der fachspezifischen Teams zusammen.
4.1.1. Analyse der Kommunikationsplattform beim A400M

<table>
<thead>
<tr>
<th>Kommunikationsart</th>
<th>Ja/Nein</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eine gemeinsame Basis zu Kommunikation</td>
<td>Nein</td>
<td>Es sollte eine gemeinsame Basis geschaffen werden, auf der jeder Beteiligte im Netzwerk kommunizieren kann.</td>
</tr>
<tr>
<td>Informationen geben und nehmen</td>
<td>Nein</td>
<td>Informationen immer ernst nehmen und vernünftig damit umgehen.</td>
</tr>
<tr>
<td>Einen gemeinsamen Leitfaden zur Kommunikation pflegen</td>
<td>Nein</td>
<td>Gemeinsames Lastenheft entwerfen</td>
</tr>
<tr>
<td>Softwaregestützte Kommunikation</td>
<td>Zum Teil</td>
<td>Outlook, Intranet, Prozessbrowser</td>
</tr>
<tr>
<td>Teaminterne Termine zur Besprechung</td>
<td>Ja</td>
<td>Teamrunden, Expertenrunden</td>
</tr>
<tr>
<td>Kommunikation verständlich darstellen</td>
<td></td>
<td>Schriftliche Form festlegen, Mündliche Form festlegen, Visuelle Möglichkeiten</td>
</tr>
<tr>
<td>Hilfen geben und annehmen</td>
<td>Nein</td>
<td>Ein gemeinsames Forum nutzen mit einem Disclaimer, der die Sprache regelt.</td>
</tr>
</tbody>
</table>

Tabelle 5: Gegenüberstellung der Kommunikationswege beim A400M

Störungen in den einzelnen Kommunikationswegen, wie falsches Verstehen von nicht definierten Aussagen oder falsche Übermittlung durch den

4.1.2. Bewertung

Es ist wichtig die richtige Information, im richtigen Format an den richtigen Empfänger zu übermitteln. Hierzu dienen verschiedene Kommunikationswege, die in einem Kommunikationshandbuch zu bestimmen sind. In dem Handbuch kann jeder nachlesen wie, was, womit und in welcher Form kommuniziert wird. Es wird vermieden über verschiedene Lieferanten zu kommunizieren (Prinzip: „Stille Post“). Die Kommunikation erfolgt direkt, auf dem für die Information geeigneten Weg und in der am leichtesten zu verstehenden Form. Der Aufbau einer Onlineplattform (Forum, Mindmapping, Office Software) hilft, Informationen direkt an jeden Teilnehmer zu übermitteln und zu visualisieren. Alle Protokolle und schriftlichen Arbeiten sollten einer bestimmten Form unterliegen. Es müssen allgemeine Regeln für die Kommunikation geschaffen werden. Die Einhaltung der Kommunikationsregeln muss stetig überprüft werden. Es sollen äußere starre Strukturen geschaffen werden, die als Leitplanken der Kommunikation dienen.
4.2. Beschreibung des Prozessmanagements beim A400M

Der Prozess „Montage der Rumpfstruktur des A400M“ läuft taktgesteuert, wobei jeder einzelne Takt auftragsgesteuert ist. Der Gesamtprozess läuft als taktgesteuerte Fließfertigung auf einer Transferstraße.

Das Prozessmanagement (Workflowmanagement) wird mit dem Tool „Prozessbrowser“ bearbeitet. Dieser bildet die Prozesse in einer Baumstruktur ab, wie in einem Dateibrowser. Die Prozesse werden nach deren Funktionen strukturiert. Es wird versucht alle Abläufe zu beschreiben, die im Gesamtprozess eine Rolle spielen. Diese Prozesse werden in die folgenden Kategorien aufgegliedert:

§ Planung,
§ Beschaffung,
§ Anlauf,
§ Serienanlauf,
§ Querschnittsprozesse.

---

69 Online Foren und Online Mind-maps dienen zum Austausch und Visualisieren von Informationen und Daten

70 Softwaretool der Fa. GPS Planfabrik GmbH zum Bearbeiten von Prozessen
Der Browser beinhaltet zu jedem abgebildeten Prozess auch eine Eingabemaske zur Beschreibung. Die Beschreibung enthält die sogenannten W-Fragen: Wer, Wo, Womit, Wie und Wann und die Inputs und Outputs eines Prozesses.
Mit einem hohen Arbeitsaufwand werden Prozessbilder in Microsoft Powerpoint, mit den Prozessschritten erstellt.

4.2.1. Analyse des Prozessmanagements beim A400M

<table>
<thead>
<tr>
<th>Darstellung</th>
<th>Ja/Nein</th>
<th>Ausführung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prozessbeschreibung</td>
<td>Ja, Ja</td>
<td>W-Fragen, Inputs/ Outputs</td>
</tr>
<tr>
<td></td>
<td>Nein, Nein</td>
<td>Zeit und Kosten, Supplier/ Customer</td>
</tr>
<tr>
<td>Prozessvisualisierung</td>
<td>Nein, Nein</td>
<td>Blockbilder, Mindmap, Sipoc, Poster</td>
</tr>
<tr>
<td></td>
<td>Ja</td>
<td></td>
</tr>
<tr>
<td>Prozesssynergien</td>
<td>Ja</td>
<td>Termine, Verknüpfungen, Material, Personal</td>
</tr>
<tr>
<td></td>
<td>Nein, Nein</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 6: Auswertung der Eigenschaften des Prozessmanagements

Es wird deutlich, dass Prozessbeschreibungen zum größten Teil vorhanden, jedoch nicht sehr übersichtlich dargestellt, sind. Die Beschreibungen beinhalten keine Durchlaufzeiten und Kosten.
Die Visualisierung findet mit hohem Erstellungsaufwand durch Poster statt. Prozesssynergien sind in der Visualisierung nur zum Teil zu finden.

Die Prozesssteuerung findet in zwei autonom arbeitenden Steuerungen statt: In einer Taktsteuerung und einer Auftragssteuerung. Diese können sich gegenseitig stören.
Die Störungen können zu Verzögerungen bzw. zum Nichtabarbeiten von Aufträgen vor Beendigung des Taktes führen. Die nicht abgearbeiteten Arbeitsaufträge können bis zum Ende mitgeführt und/ oder ungeplant verarbeitet werden.

4.2.2. Bewertung

Auf die Visualisierung muss mehr Wert gelegt werden. Die Beschreibungen sollten um die Durchlaufzeiten und die Kosten erweitert werden. Im Idealfall werden die Beschreibungen direkt in das Blockschaltbild eingetragen und auf einem Poster als Roadmap\(^71\) dargestellt. Durch die Darstellung als Roadmap kann jeder Mitarbeiter schnell einen Überblick bekommen.

Bei der Prozesssteuerung muss eine Regelung für nicht fertig gestellte Aufträge erstellt werden. Diese steuert kontrolliert, welche Aufträge zu welchem Zeitpunkt eingefügt und bearbeitet werden können. Hierzu muss erkannt werden, welcher Auftrag noch nicht abgearbeitet wurde und vor welchen Schritten er erledigt sein muss.

4.3. Beschreibung des Qualitätsmanagements beim A400M

Das Qualitätsmanagement beschäftigt sich mit der Festlegung der Kriterien, die einzuhalten sind, um Funktion und Qualität des Produktes und der Prozesse zu gewährleisten. Das Management hat Qualitäts- und Funktionshaltepunkte in der Produktion festgelegt. An den Haltepunkten müssen alle Q-Meldungen\(^72\) erfüllt sein. Die Q-Meldungen könnten automatisch generiert werden, da die Fertigung diese Schritte schon dokumentiert hat. Es kann also eine sofortige Prüfung über SAP erfolgen.

4.3.1. Analyse des Qualitätsmanagements beim A400M

Es können Probleme auftreten durch eine falsche Kontrolle in der Fertigung. Deshalb sollte in der Anlaufphase und später stichprobenartig zusätzlich überprüft werden, ob alle Funktions- und Qualitätshaltepunkte korrekt erfüllt sind.

---

\(^71\) Roadmap, ist ein Abbild der Projektstruktur mit den einzelnen Schritten
\(^72\) Qualitätsmeldungen
Zusätzliche Probleme können bei einer automatischen Überprüfung durch zu lange Stillstände auftreten, da die Automatik nicht entscheiden kann, welche sinnvolle Lösung zu wählen ist.

4.3.2. Bewertung
Mit kleinen Korrekturarbeiten bei den Kontrollfunktionen und mit einer kontinuierlichen Verbesserung der automatischen Überprüfung ist hier eine sinnvolle Lösung gewählt.

4.4. Beschreibung des Lieferantenmanagements beim A400M

Lieferanten haben einen großen Einfluss auf den Wert der Produkte und spielen eine große Rolle für die Kundenzufriedenheit. Deshalb wird eine vollständige Integration in die geschäftsethischen Aktivitäten angestrebt.


Die Richtlinien verpflichten zu langfristigen partnerschaftlichen Beziehungen zwischen Kunden und Lieferanten, insbesondere bei der Entwicklung von technischem „Know-how“.
Der Sinn dieser Beschaffungsprinzipien besteht darin, einen Wettbewerbsvorteil durch langfristige Bindung der besten Lieferanten weltweit zu schaffen und diese stetig zu verbessern, um immer im Wettbewerbsvorteil zu bleiben.

4.4.1. Analyse des Lieferantenmanagements


4.4.2. Bewertung

Die Partner im Wertschöpfungsnetzwerk sehen sich nicht in einer Lieferantenstruktur. Die Verantwortlichkeiten im Wertschöpfungsnetzwerk müssen daher klar definiert und abgebildet werden, um die Abhängigkeiten
und Funktionen der einzelnen Partner im Wertschöpfungsnetzwerk für jeden Teilnehmer zu verdeutlichen. Es muss also ein Netzwerkabbild mit allen Teilnehmern (opportunistischen Lieferanten, partnerschaftlichen Lieferanten und Abnehmern) geben. Hieraus müssen die Abhängigkeiten zueinander ersichtlich sein, um bei Mängeln in der Wertschöpfung an den richtigen Punkten reagieren zu können.

4.5. Beschreibung des Controllings beim A400M

Das Controlling wird zurzeit beim A400M an Hand von Reportdaten, die nur absolute Werte wiedergeben (z.B. 50 Workorders\textsuperscript{73} sind geöffnet) durchgeführt. Es werden kaum aussagekräftige Daten benutzt, um die Produktion zu beeinflussen. Die Reports\textsuperscript{74} spiegeln zwar die Stände wider, verdeutlichen jedoch nicht, an welchen Stellen Handlungsbedarf besteht, da die absoluten Werte keine Aussage darüber treffen, mit wie viel Aufwand die Stände erreicht wurden.

\textsuperscript{73} Workorders, sind die einzelnen Arbeitsaufträge, die zu erledigen sind

\textsuperscript{74} Report, bedeutet das Vorlegen der aktuellen Prozesszahlen
4.5.1. Analyse des Controllings beim A400M

<table>
<thead>
<tr>
<th>Controlling</th>
<th>Ja/Nein</th>
<th>Messbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektcontrolling</td>
<td>Nein</td>
<td>beherrschte Komplexität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Vergleich Sollwert und Istwert)</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>erkannter Bedarf (Sollwert und Istwert)</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>Befähigung im Team</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(alle Spezialisten vorhanden?)</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>erzielbarer Fortschritt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(erkannte Potenziale genutzt?)</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>vertrauensvolle Kooperation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(nur teilweise messbar)</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>stützender Rahmen des Projektes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(nicht messbar)</td>
</tr>
<tr>
<td>Lieferantencontrolling</td>
<td>Nein</td>
<td>Termintreue</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>Qualität</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>Innovation</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>Zusammenarbeit</td>
</tr>
<tr>
<td>Qualitäts- und Funktionscontrolling</td>
<td>Nein</td>
<td>Qualität Prozess</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>Funktion Prozess</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>Qualität Produkt</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>Funktion Produkt</td>
</tr>
<tr>
<td>Leistungs- und Kostencontrolling</td>
<td>Nein</td>
<td>Maschinenleistung</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>Kosten</td>
</tr>
<tr>
<td>Änderungscontrolling</td>
<td>Nein</td>
<td>Änderungen</td>
</tr>
<tr>
<td>Prozesscontrolling</td>
<td>Nein</td>
<td>Abgehandelte Aufträge</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>Arbeitszeit</td>
</tr>
<tr>
<td></td>
<td>Nein</td>
<td>Ausbringung</td>
</tr>
</tbody>
</table>

Tabelle 7: Auswertung des Controllingbereiches
4.5.2. **Bewertung**

Das Controlling beim A400M muss aus dem jetzigen Stand eines Reportings herausgehoben werden. Alle Eingriffsmöglichkeiten müssen aufgezeigt werden, um zu verdeutlichen wie, wo und in welchem Umfang es Verbesserungspotenziale gibt.


Die Produktivität der einzelnen Stationen muss in detaillierten Reports verdeutlicht werden. Diese sollten die Durchlaufzeiten, die nicht bearbeiteten Aufträge, die tatsächlichen Stunden in Arbeitsstunden und die zusätzlichen Leistungen enthalten, um eine Aussagekraft über mögliche Problemstellungen zu erhalten.

Der Prozess sollte versuchen sich den Zielen anzunähern, hierbei ist immer auf das Ideal zu achten. Störgrößen, die nicht bedacht wurden, treten immer wieder auf, da es einen Unterschied zwischen der Realität und dem Ideal gibt. Daher sollte die Annäherung als stetige Regelung ausgelegt sein.

4.6. **Beschreibung des Projektmanagements beim A400M**

Das Projektmanagement beim A400M besteht aus einem Teamleiter und seinem Projektteam. Es deckt die Teilbereiche eines Projektes (Projektmanagement, Prozessmanagement, Lieferantenmanagement, Qualitätsmanagement, Kosten- und Leistungsmanagement und Controlling) qualitativ ab. Das Projektmanagement gibt die Definition, Terminierung, und den Rahmen des Projektes in Zusammenarbeit mit Airbus vor. Das Projektmanagement sorgt für die Einhaltung des Projektrahmens und generiert neue Projekte, aus den nicht vorhersehbaren Problemen im Projekt.
Das Projektmanagement hat die Führungsaufgaben zur Zusammenarbeit zwischen den einzelnen Managementbereichen im Projekt und führt diese für eine optimale Zielerreichung zusammen. Es sorgt für eine ordentliche terminierte Kommunikation, erhält die Informationen, das Wissen und gibt alles an die richtigen Schnittstellen weiter. Beim A400M arbeitet das Projektmanagement institutional und funktional. Es sorgt für die Eingliederung des Projektes in die Unternehmensstrukturen und in die Unternehmensabläufe.

4.6.1. Analyse des Projektmanagements beim A400M

Das Projektmanagement wird durch folgende Kennzahlen beschrieben und beurteilt:

<table>
<thead>
<tr>
<th>Gestaltbare Indikatoren</th>
<th>Teilweise gestaltbare Indikatoren</th>
<th>Indirekt gestaltbare Indikatoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>beherrschte Komplexität</td>
<td>erzielbarer Fortschritt</td>
<td>stützender Rahmen</td>
</tr>
<tr>
<td>erkannter Bedarf</td>
<td>vertrauensvolle Kooperation</td>
<td>willige Empfänger</td>
</tr>
<tr>
<td>befähigtes Team</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 8: Auswertung des Projektmanagements

Instrumentarien gemacht, sie werden nicht durch das Projektmanagement vorgegeben.

4.6.2. Bewertung

Das Projektmanagement beim A400M ist sehr gut aufgestellt. Es besteht noch ein Optimierungsbedarf in der Behandlung des Projektfortschrittes. Der Projektfortschritt kann besser abgebildet und dementsprechend besser bearbeitet werden.


4.7. Beschreibung des Kosten- und Leistungsmanagements beim A400M

Beim A400M werden die Leistung und die Kosten an Hand der Vorgaben aus den Lastenheften berechnet. Für den Bereich des Produktionsanlaufes werden die Leistungen und Kosten über die Lernkurve und über die berechneten Werte des Lastenheftes ermittelt. Im Produktionsanlauf werden also die Lernfaktoren auf die Serienplanung angewandt und so die Sollwerte des Serienanlaufes bestimmt.

Es ergeben sich die Kostensollwerte für:

§ Herstellungskosten,
§ Fertigungskosten,
§ Materialkosten,
§ Maschinenkosten,
§ Personalkosten,
§ Betriebsverbrauchskosten,
§ und Rüstkosten.

Die Leistungen setzen sich aus

§ Maschinenleistung,

75 Jap.: Kai: Veränderung, Zen: zum Besseren
§ und Personalleistung zusammen.

4.7.1. Analyse des Kosten und Leistungsmanagements beim A400M

Die Kosten und die Leistungen werden für alle Produktionsfaktoren bestimmt. Es fehlen die Einzelkosten und -leistungen für einzelne Arbeitschritte.

4.7.2. Bewertung

Auf die einzelnen Prozesse müssen die Gesamtkosten zusätzlich herunterdividiert werden und in die Prozessbeschreibungen mit einfließen. Eine Prozessüberwachung kann durch das Leistungs- und Kostenmanagement effizient unterstützt werden.

4.8. Beschreibung des Änderungsmanagements beim A400M

Ein Änderungsmanagement für den A400M besteht nicht. Änderungen, die in den Prozessen angestrebt werden, werden individuell für die Anforderungen gestaltet. So werden Änderungsanforderungen an die Abteilungen, die betroffen sind geleitet und nicht auf ihre Abarbeitungsstruktur hin überwacht.

4.8.1. Analyse des Änderungsmanagements beim A400M

Durch die individuelle Abarbeitung bei einem Änderungsbedarf werden verschiedenste nicht spezifizierte Prozesse angestoßen, die nicht strukturiert überwacht werden können. Es entstehen nicht nachvollziehbare Arbeitsketten in denen Fehler schwer identifizierbar sind. Eine einheitliche Dokumentation zu den Änderungen ist nicht vorhanden. Änderungen könnten über verschiedene Wege doppelt angestoßen werden.

4.8.2. Bewertung

Eine geregelte einheitliche Änderungsroutine muss implementiert werden, um unnötigen Aufwand zu vermeiden. Durch ein Änderungsmanagement werden Änderungen erkannt, analysiert, bearbeitet und geregelt in die Prozesse integriert.
5. Konzept für einen Produktionsanlauf

Das Konzept für einen Produktionshochlauf sieht eine Abarbeitung des Produktionsanlaufes nach der unter Kapitel 3.7 beschriebenen Projektmethodik vor. Es wird nachfolgend an Hand einer Checkliste die Vorgehensweise beschrieben, mit welchen methodischen Mitteln in welcher Phase gearbeitet werden kann.

5.1. Kommunikationsbasis

Die Kommunikationsbasis dient im Produktionsanlauf der Sicherstellung der Kommunikationswege und -formen sowie der Terminierung von Kommunikationspunkten.

5.1.1. Aufbau eines Kommunikationshandbuches als Basis

Missverständnissen, die zu Problemen führen, kann vorgebeugt werden durch die Übermittlung der richtigen Informationen im richtigen Format an die richtigen Empfänger. Eine fehlerlose Kommunikation wird ermöglicht durch eine gemeinsame Kommunikationsbasis. Die Kommunikationsbasis sollte in einem Kommunikationshandbuch festgelegt sein.

In einem Kommunikationshandbuch sollten folgende Punkte beschrieben sein:

- Adressliste aller Beteiligten
- Kommunikationswege
- Zweck der Kommunikationswege
- Formblätter
- Zweck der Formblätter
- Kommunikationsterminplan
- Kommunikationssprache
- Index über projektspezifische Fachbegriffe

5.1.1.1. Aufbau einer Adressliste/-datenbank

Alle Teilnehmer im Wertschöpfungsnetzwerk müssen in eine Adressliste mit ihrem Verantwortungsbereich und ihren Kommunikationsadressen aufgenommen und diese muss an alle übermittelt werden.

5.1.1.2. Aufbau von Kommunikationswegen

Für alle Kommunikationsarten müssen verbindliche Kommunikationswege geschaffen werden. Die Kommunikationsmöglichkeiten, die zur Verfügung stehen sind zum Beispiel:

1. Direkte Kommunikation
   a. Mündliche Kommunikation
      i. Versammlungen
      ii. Teamrunden
      iii. Expertenrunden
      iv. Einzelgespräche
      v. Telefonate
   b. Schriftliche Kommunikation
      i. Briefe/ e-Mail/ Fax
      ii. Internetplattformen
      iii. Kommunikationstools

2. Indirekte Kommunikation
   a. Schriftliche Kommunikation
      i. Aushänge
      ii. Internetplattformen
      iii. Kommunikationstools
   b. Mündliche Kommunikation
      i. Übermittlung von Informationen durch Dritte

Diese Kommunikationswege müssen mit den jeweiligen Zwecken für Kommunikationsarten belegt werden, damit jeder Teilnehmer für das Übermitteln von Informationen den richtigen Weg wählt.
5.1.1.3. Erstellung von Formblättern

Es müssen für bestimmte Kommunikationsgründe Formblätter erstellt werden. Diese dienen der Übersichtlichkeit und der leichten schnellen Bearbeitung durch Wiederholbarkeit. Formblätter sind daher sinnvoll bei:

- Protokollen,
- standardisierten Prozessen,
- schriftlicher Kommunikation.

Formblätter dienen also immer einem bestimmten Zweck, für den sie gebraucht werden. Es ist somit sinnvoll, dass eine Datenbank mit Formblättern erstellt wird. In der Datenbank kann jeder Teilnehmer die für seine Zwecke benötigten Formblätter auswählen und nutzen.

5.1.1.4. Erstellung eines Kommunikationsterminplans


5.1.1.5. Kommunikationssprache


5.2. Prozessmanagement

Das Prozessmanagement hat die Aufgaben, die Prozesse zu beschreiben, zu visualisieren und Synergien als Schnittstellen zu definieren. Zudem müssen die Prozesse analysiert und gesteuert werden.

---

76 Balkendiagramm mit Terminen
5.2.1. Prozessbeschreibungen


1. Schriftliche Prozessbeschreibungen
   i. Ausgangssituation
   ii. Zielsetzung
   iii. Aufgabe
   iv. Mögliche Probleme/ Risikofaktoren

2. Visuelle Prozessbeschreibungen
   i. Blockschaltbilder
   ii. Lean Manufacturing-Diagramme
   iii. Tabellarische Abbildungen

Die Übergabepunkte der einzelnen Prozesse sollten alle definiert und mit ihren Übergabewerten dokumentiert sein. Zudem sollten alle Prozessbeschreibungen nach dem Muster des SIPOC\textsuperscript{77} aufgebaut sein, um immer direkt alle Informationen zu einem Prozess zu finden.

5.2.2. Prozessanalyse

Die Prozesse müssen auf ihre Funktion hin analysiert werden. Die Funktion ist immer dann gegeben, wenn die Istwerte der Prozesse in den Toleranzgrenzen der Zielvorgaben liegen. Funktioniert ein Prozess nicht so besteht Handlungsbedarf. Um die Funktion eines Prozesses zu bestimmen stehen folgende Analysen zur Verfügung.

\textsuperscript{77} Siehe Abb. 9
1. Ist-/Soll-Analysen
   a. Wirkungsgrad
   b. Produktivität
   c. Effektivität

2. Multimomentaufnahmen
Durch die Erkenntnisse aus diesen Analysen müssen die Daten durch weitere Betrachtungen beurteilt werden. Als beste Methode der Klassifizierung von Problemen gilt die Paretoanalyse, die in eine ABC- oder ZYX-Klassifizierung überführt wird.

5.2.3. Prozesssteuerung
Die Ergebnisse der Analysen ermöglichen es, direkt an den größten Problemstellen der Prozesse einzugreifen und somit möglichst schnell wieder in den Zielbereich zu gelangen.

5.3. Projektmanagement
Das Projektmanagement dient der Steuerung aller projektabhängigen Tätigkeiten, um das Projekt in die Abläufe, in den Aufbau und in die methodische Vorgehensweise eines Unternehmens zu integrieren. Das gesamte Projekt wird von dem Teamleiter und seinem Team durch die fünf Projektphasen gesteuert.

5.3.1. Definitionsphase eines Projektes
Die Definition eines Projektes findet mit Hilfe einer Projektcharta, eines Zwei-Seiten-Papiers oder eines Lastenheftes statt. Diese Dokumente enthalten folgende Bestandteile:

1. Benennung eines Teamleiters
   a. Erfahrung mit Serienanläufen
   b. Qualifikationen

2. Auswahl eines Projektteams
   a. Alle benötigten qualitativen Funktionen erfüllt

3. Beschreibung der Ausgangssituation
   a. Ist-Zustand

4. Beschreibung der Zielstellung
a. Soll-Zustand

5. Beschreibung der Aufgabe
   a. Wodurch wird das Ziel erreicht?

6. Vorgehensweise
   a. Nach welcher Methodik wird im Projekt vorgegangen?
   b. Welche Tools kommen zum Einsatz?

7. Beschreibung der möglichen Probleme
   a. Konstruktions FMEA
   b. Prozess FMEA
   c. Projekt FMEA

8. Erstellen eines Terminplanes
   a. Tabellarisch
   b. Gantt-diagramm

9. Festlegen von Meilensteinen
   a. Alle relevanten Punkte, die in dem Projekt erreicht werden müssen

10. Festlegen der Verantwortlichkeiten
    a. Benennung der Verantwortlichkeiten nach Fachgebieten

11. Festlegen von Abbruchkriterien
    a. Faktoren, die zum Erreichen des Projektzieles führen
       i. Erreichen der Serienreife
    b. Faktoren, die zum Scheitern des Projektes führen
       i. Zu hohe Kosten
       ii. Zu viel Zeit, um das Produkt rechtzeitig am Markt zu platzieren
       iii. Keine Verfügbarkeit von Produktionsfaktoren

5.3.2. Messbarkeit des Projektes erstellen

Die Messbarkeit eines Projektes dient der Handlungsfähigkeit in einem Projekt. Um ergebnisorientiert eingreifen zu können, müssen die Prozesse eines Projektes messbar sein.

1. Festlegen der Prozessgrößen
   a. Prozesseingangsgrößen
b. Prozessausgangsgrößen
2. Prozessgrößen auf messbare Werte zurückführen
   a. Prozessgrößen durch CTQ’s auf messbare Werte führen
3. Messpunkte für die Prozessgrößen definieren
   a. Messpunkte nach den Messwerten festlegen
4. Messpunkte in die Prozesse einsteuern
   a. Messpunkte kontrolliert in den Prozess einbringen
      i. Vollautomatisiert
         1. Kein Zeitverlust
         2. Hohe Kosten in der Beschaffung
      ii. Teilautomatisiert
         1. Zeitaufwändig
         2. Hoher Personalaufwand

5.3.3. Analysieren des Projektes

Die Analysephase eines Projektes dient der Beurteilung des Projektes mit seinen Prozessen. Die Analysen eines Projektes dienen der Darstellung und Begründung der Eingriffsoptionen:
   1. Aufgenommene Messgrößen in analysierter Form darstellen
   2. Eingriffsgrenzen für das Projekt festlegen
   3. Eingriffsmöglichkeiten definieren

5.3.4. Innovative Ideenfindung zur Optimierung des Projektes

Die Ideenfindungsphase dient der Optimierung eines Projektes. Ein Projekt kann stabilisiert oder auch verbessert werden.
   1. Problemstellen benennen
      a. Brainstorming für jedes Problem erstellen
      b. Brainwriting
   2. Ideen dokumentieren und bewerten
      a. Ideen in Tests überführen und bewerten
5.3.5. **Regelung des Projektes**

Aufgrund entstandenem Optimierungsbedarfs erarbeitete und getestete Ideen in das Projekt integrieren und überwacht einführen.

5.4. **Lieferantenmanagement**

Das Lieferantenmanagement muss alle Lieferprodukte, die im Hinblick auf das Projekt benötigt werden, organisieren und die Verfügbarkeit aller zu liefernden Produktionsfaktoren zum SOP\textsuperscript{78} sicherstellen. Das Lieferantenmanagement übernimmt hierfür folgende Aufgaben:

5.4.1. **Lieferantenstruktur/-beziehungen**

1. Beschreibung der Lieferanten in schriftlicher Form
   a. Lieferprodukt
   b. Standort
   c. Lieferzeiten
   d. Kosten

5.4.2. **Lieferantenstrategien**

- Beschreibung der Lieferantenstrategie je nach Produkt
  § Opportunistische Strategie
    - Bei Standardprodukten
    - Bei hoher Lieferantenvielfalt
  § Partnerschaftliche Strategie
    - Bei Sonderanfertigungen
    - Bei niedriger Lieferantenvielfalt

5.4.3. **Lieferantenbewertung/-beurteilung**

- Nach Kosten
- Lieferzeit
- Lieferantenstrategie

\textsuperscript{78} Start of Production
5.4.4. Lieferantenauswahl

- Auswahl der besten Lieferanten nach der Bewertung

5.4.5. Lieferantencontrolling, Lieferantenentwicklung

- Stetige Überprüfung der Lieferanten
- Stetige Aufnahmen der Lieferantenentwicklung

5.4.6. Lieferantenintegration

- Integration von vertrauenswürdigen Lieferanten in die Prozessentwicklung

5.4.7. Lieferantenlogistik

- Steuerung der logistischen Faktoren

5.5. Änderungsmanagement

Das Änderungsmanagement dient der Bearbeitung des Änderungsbedarfs. Änderungen folgen einer festgelegten Routine, die bei jeder Änderung des ursprünglichen Prozesses durchlaufen wird. Der Durchlauf der Änderungsroutine muss durchgehend dokumentiert werden, um die Änderungen später noch nachvollziehen zu können und um Veränderungen im Prozess sichtbar zu machen.

5.5.1. Änderungsroutine

5.5.1.1. Änderungsidee

- Prozessoptimierung
- Prozessstabilisierung
- Prozessveränderung

5.5.1.2. Auslösung Änderungsvorhaben

- Bestätigung der Änderungsidee
- Ablehnung der Änderungsidee

5.5.1.3. Vorabklärung

- Beschreibung der Änderung für alle beteiligten Prozesse
• Grobdefinition der Änderung

5.5.1.4. Detaillierung
• Pflichtenheft für die Änderung

5.5.1.5. Abstimmung mit dem Kunden
• Vorlage des Pflichtenheftes
• Bestätigung durch den Kunden
• Ablehnung durch den Kunden

5.5.1.6. Genehmigung der Wertgrenzen
• Genehmigung aller Kosten und Leistungen

5.5.1.7. Konstruktive Umsetzung
• Konstruktion der Änderungsidee

5.5.1.8. Produktive Umsetzung
• Einarbeitung in den zu ändernden Prozess

5.5.1.9. Die Änderung wird kontrolliert
• Negative Auswirkungen von Änderungen auf den Prozess müssen dazu führen, den Änderungsregelkreis erneut zu durchlaufen.
• Positive Auswirkungen von Änderungen auf den Prozess müssen dazu führen, diese in den Gesamtprozess zu implementieren.

5.6. Qualitätsmanagement
Das Qualitätsmanagement plant, analysiert und regelt die Funktion und Qualität des Produktionshochlaufs.

5.6.1. Planung der Funktion und der Qualität
Zur Planung der Funktion und der Qualität gehören die Funktions- und Qualitätsmerkmale als Teilziele, die dem Erreichen des Gesamtzieles dienen. Ziel im Produktionsanlauf ist es, die Serienreife in einer bestimmten Zeit, zu bestimmten Kosten und in einer bestimmten Qualität zu erreichen.
1. Festlegen der Ziele
   a. Kosten
   b. Zeit
   c. Serienreifegrade
2. Festlegung der funktions- und qualitätsrelevanten Größen
   a. Ziele des Kunden definieren (VOC Voice of Customer)
   b. Kosten
   c. Zeit
   d. Produktabhängige Faktoren (Maße, Gewicht, Leistung usw.)
3. Messbarkeit der funktions- und qualitätsrelevanten Größen bestimmen
   a. Über ein CTQ die Größen auf Messwerte zurückführen
4. Festlegung der Funktions- und Qualitätsmesspunkte
   a. Erstellen von Qualitygates

5.6.2. Analyse der Funktions- und Qualitätsmerkmale

5.6.3. Regelung der Funktion und der Qualität
Bei Qualitätsmeldungen muss das Qualitätsmanagement die Qualitätsmeldung prüfen und je nach Relevanz eine Änderung beim Änderungsmanagement anstoßen.

6. Fazit
Das Ergebnis dieser Diplomarbeit sind die Bestandteile des Anlaufmanagements, die in Form einer Checkliste dargestellt wurden. Anhand dieser Checkliste kann das Unternehmen GPS Planfabrik einen Produktionsanlauf als Projekt bearbeiten. Die Checkliste dient hier einem Projektlauf und der Kontrolle eines Anlaufprojektes. Die Schwierigkeiten in dieser Diplomarbeit lagen in dem Transfer der in der Literatur beschriebenen Möglichkeiten in den Flugzeugbau, da die in der Literatur
7. Verzeichnisse

7.1. Tabellenverzeichnis

Tabelle 1: GPS Planfabrik GmbH Historie ................................................................. 8
Tabelle 2: Einflussgrößen im Anlauf ........................................................................ 15
Tabelle 3: Interorganisationales Arbeiten ................................................................. 19
Tabelle 4: Projektindikatoren ..................................................................................... 26
Tabelle 5: Gegenüberstellung der Kommunikationswege beim A400M .................... 44
Tabelle 6: Auswertung der Eigenschaften des Prozessmanagements ...................... 47
Tabelle 7: Auswertung des Controllingbereiches ..................................................... 52
Tabelle 8: Auswertung des Projektmanagements ...................................................... 54

7.2. Abbildungsverzeichnis

Abbildung 1: IFA Bauteile mit den Lieferanten ...................................................... 10
Abbildung 2: Projektposter der Prozesskette ............................................................ 10
Abbildung 3: Prozesskette der ersten vier Takte ...................................................... 11
Abbildung 4: Zeitraum des Anlaufes in der Serienproduktion .................................. 16
Abbildung 5: Zieldefinition als Grafik ....................................................................... 16
Abbildung 6: Interorganisationaler Zusammenarbeit im Wertschöpfungsnetzwerk ... 20
Abbildung 7: DMAIC-Kreislauf für Six Sigma Projekte ............................................ 22
Abbildung 8: Magisches Dreieck .............................................................................. 24
Abbildung 9: Prozessbeschreibung mit Hilfe eines SIPOC´s .................................... 36
Abbildung 10: Möglichkeiten des Internets ............................................................. 46
Abbildung 11: Visuelle Darstellung des Lieferantenmanagements ............................ 50
### 7.3. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Ausgeschrieben</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A400M</td>
<td>Airbus 400 Militär</td>
<td>Bezeichnung des Flugzeugtyps</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
<td>Titel für Grafiken, Bilder, Zeichnungen</td>
</tr>
<tr>
<td>BDE</td>
<td>Betriebsdatenerfassung</td>
<td>Die Erfassung von betriebsabhängigen Daten</td>
</tr>
<tr>
<td>CTQ</td>
<td>Critical To Quality</td>
<td>Qualitätsmerkmale auf messbare Punkte zurückführen</td>
</tr>
<tr>
<td>DB</td>
<td>Datenbank</td>
<td>Datensammlung</td>
</tr>
<tr>
<td>DMAIC</td>
<td>Define Measure Analyse Improvement Controll</td>
<td>Bearbeitungskreislauf Six Sigma</td>
</tr>
<tr>
<td>EADS</td>
<td>European Aeronautic Defence and Space Company</td>
<td>Europäischer Luft- und Raumfahrtkonzern</td>
</tr>
<tr>
<td>FMEA</td>
<td>Fehler Möglichkeits- und Einflussanalyse</td>
<td>Analyse zur Priorisierung von Fehlermöglichkeiten</td>
</tr>
<tr>
<td>GmbH</td>
<td>Gesellschaft mit beschränkter Haftung</td>
<td>Gesellschaftsform</td>
</tr>
<tr>
<td>GPS</td>
<td>Ganzheitliche Produktionssysteme</td>
<td>Teil des Firmennamens der GPS Planfabrik GmbH</td>
</tr>
<tr>
<td>IFA</td>
<td>Integrated Fuselage Assembly</td>
<td>Alle eingebundenen Baugruppen im Flugzeugrumpf</td>
</tr>
<tr>
<td>JIT</td>
<td>Just In Time</td>
<td>Keine Lagerhaltung/ ohne Verzögerung</td>
</tr>
<tr>
<td>PDF</td>
<td>Portable Document Format</td>
<td>Format für alle gebräuchlichen Rechnersysteme</td>
</tr>
<tr>
<td>Q-Meldung</td>
<td>Qualitätsmeldung</td>
<td>Beschreibung eines Qualitätsmangels</td>
</tr>
<tr>
<td>SAP</td>
<td>SAP AG</td>
<td>Aktiengesellschaft für Softwareentwicklung</td>
</tr>
<tr>
<td>SIPOC</td>
<td>Supplier Input Process Output Customer</td>
<td>Prozessdarstellung</td>
</tr>
<tr>
<td>SOP</td>
<td>Start Of Production</td>
<td>Startpunkt, an dem das erste Teil produziert wird, Prototypen.</td>
</tr>
<tr>
<td>SORP</td>
<td>Start Of Regular Production</td>
<td>Startpunkt der ersten Produktion, serienzugehörig.</td>
</tr>
</tbody>
</table>
7.4. Literaturverzeichnis

7.4.1. Buchquellen

Becker, H.: Was ist Controlling, was darf es nicht sein?, 1. Auflage Luchterhand, 1993


Berthold, H.: Messen-Steuern-Regeln, 8. Auflage Vieweg, 2005


Strohmeier, H.: Vorhabens-Fitness - Wie Sie Ihren Projekten unwiderstehliche Kraft und Stärke verleihen, Hanser, 2005

Wagner, S.: Lieferantenmanagement, 1. Auflage Hanser, 2002

Wexberger, L.: Arbeitsgestaltung in der Serienfertigung, 1. Auflage Campus, 1984

Wagner, S.: Lieferantenmanagement, 1. Auflage Hanser, 2002

7.4.2. Internetquellen

http://de.wikipedia.org/wiki/Controlling; 05.09.2006, 08:56

http://www.controlling-portal.org/; 05.09.2006, 07:16

http://www.controllerspielwiese.de/; 28.08.2006, 14:34


http://de.wikipedia.org/wiki/Prozessmanagement; 23.08.2006, 10:23

http://de.wikipedia.org/wiki/Lieferantenmanagement; 27.08.2006, 14:29

http://de.wikipedia.org/wiki/%C3%84nderungsmanagement; 13.08.2006, 12:11

http://de.wikipedia.org/wiki/Scope_Management; 27.08.2006, 14:43

http://de.wikipedia.org/wiki/Funktion; 05.09.2006, 11:34

http://de.wikipedia.org/wiki/Qualit%C3%A4tsmanagement; 05.09.2006, 11:45

http://de.wikipedia.org/wiki/Projektindikatoren; 05.09.2006, 12:49

http://de.wikipedia.org/wiki/Projektmanagement; 05.09.2006, 12:52
7.4.3. Zeitschriften

Fachzeitschrift MaschinenMarkt; Vogel, Ausgabe April 2005
## Glossar

| A400M | 5, 10, 12, 14, 47, 48, 49, 51, 53, 54, 56, 57, 58, 59, 60, 61, 62 |
| Analyse | 28, 47, 48, 51, 53, 55, 57, 59, 61, 62, 73 |
| Änderungsmanagement | 24, 28, 32, 61, 62, 71, 73 |
| Anlaufmanagement | 7, 12, 15, 19, 20, 21, 22, 24, 44, 75 |
| Bewertung | 36, 50, 52, 54, 55, 58, 60, 61, 62, 70 |
| Controlling | 24, 37, 43, 44, 56, 57, 58, 75, 76 |
| Einflussgrößen | 17, 19, 39, 43, 46 |
| Expertenrunden | 48, 49, 64 |
| Faktoren | 15, 16, 17, 37, 38, 46, 65, 68, 71, 73 |
| Funktional | 26 |
| GPS Planfabrik GmbH | 5, 7, 9, 10, 51 |
| Grundsätze | 20 |
| Indikatoren | 29, 30, 31, 41, 44, 59 |
| Information | 46 |
| Institutional | 26 |
| Instrumental | 26 |
| Interorganisationale | 15, 22, 23, 75 |
| Kammlinie | 12 |
| Kommunikation | 5, 17, 28, 48, 49, 50, 59, 63, 64, 65 |
| Kommunikationsnetzwerk | 21 |
| Kosten | 36 |
| Kostenmanagement | 24, 42, 61, 76 |
| Lebenszyklen | 19 |
| Lernkurve | 19, 20, 60 |
| Lieferantenmanagement | 5, 24, 33, 34, 37, 39, 45, 54, 55, 58, 70, 76 |
| Produkt | 16, 22, 42 |
| Produktionsanlauf | 5, 13, 14, 15, 18, 19, 27, 31, 44, 47, 60, 62, 72, 74 |
| Projektcharta | 28, 67 |
| Projektleiter | 27 |
| Projektmanagement | 5, 9, 24, 26, 27, 28, 44, 58, 59, 60, 67, 76 |
| Prototypenbau | 16 |
| Prototypenphase | 10, 13, 16, 47 |
| Prozessbeschreibungen | 52, 61, 65, 66 |
| Prozesse | 46 |
| Prozessmanagement | 5, 24, 39, 45, 47, 51, 58, 65, 76 |
| Qualität | 16, 17 |
| Qualitätsmanagement | 24, 30, 31, 53, 72, 73 |
| Roadmap | 36, 52, 53 |
| Serienanlauf | 16, 17 |
| Serienplanung | 16, 61 |
| Wirkungsgrad | 23, 44, 54, 66 |

---

**Seite 73**